190 resultados para BETA-2-ADRENERGIC RECEPTOR


Relevância:

40.00% 40.00%

Publicador:

Resumo:

Peripheral blood mononuclear cells from subjects never exposed to Leishmania were stimulated with Leishmania guyanensis. We demonstrated that L. guyanensis-stimulated CD8(+) T cells produced interferon (IFN)- gamma and preferentially expressed the V beta 14 T cell receptor (TCR) gene family. In addition, these cells expressed cutaneous lymphocyte antigen and CCR4 surface molecules, suggesting that they could migrate to the skin. Results obtained from the lesions of patients with localized cutaneous leishmaniaisis (LCL) showed that V beta 14 TCR expression was increased in most lesions (63.5%) and that expression of only a small number of V beta gene families (V beta 1, V beta 6, V beta 9, V beta 14, and V beta 24) was increased. The presence of V beta 14 T cells in tissue confirmed the migration of these cells to the lesion site. Thus, we propose the following sequence of events during infection with L. guyanensis. After initial exposure to L. guyanensis, CD8(+) T cells preferentially expressing the V beta 14 TCR and secreting IFN- gamma develop and circulate in the periphery. During the infection, these cells migrate to the skin at the site of the parasitic infection. The role of these V beta 14 CD8(+) T cells in resistance to infection remains to be determined conclusively.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We used stepwise photochemical cross-linking for specifically assembling soluble and covalent complexes made of a T-cell antigen receptor (TCR) and a class I molecule of the major histocompatibility complex (MHC) bound to an antigenic peptide. For that purpose, we have produced in myeloma cells a single-chain Fv construct of a TCR specific for a photoreactive H-2Kd-peptide complex. Photochemical cross-linking of this TCR single-chain Fv with a soluble form of the photoreactive H-2Kd-peptide ligand resulted in the formation of a ternary covalent complex. We have characterized the soluble ternary complex and showed that it reacted with antibodies specific for epitopes located either on the native TCR or on the Kd molecules. By preventing the fast dissociation kinetics observed with most T cell receptors, this approach provides a means of preparing soluble TCR-peptide-MHC complexes on large-scale levels.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Using a direct binding assay based on photoaffinity labeling, we studied the interaction of T cell receptor (TCR) with a Kd-bound photoreactive peptide derivative on living cells. The Kd-restricted Plasmodium berghei circumsporozoite (PbCS) peptide 253-260 (YIPSAEKI) was reacted NH2-terminally with biotin and at the TCR contact residue Lys259 with photoreactive iodo, 4-azido salicylic acid (IASA) to make biotin-YIPSAEK(IASA)I. Cytotoxic T lymphocyte (CTL) clones derived from mice immunized with this derivative recognized this conjugate, but not a related one lacking the IASA group nor the parental PbCS peptide. The clones were Kd restricted. Recognition experiments with variant conjugates, lacking substituents from IASA, revealed a diverse fine specificity pattern and indicated that this group interacted directly with the TCR. The TCR of four clones could be photoaffinity labeled by biotin-YIPSAEK(125IASA)I. This labeling was dependent on the conjugates binding to the Kd molecule and was selective for the TCR alpha (2 clones) or beta chain (1 clone), or was common for both chains (1 clone). TCR sequence analysis showed a preferential usage of J alpha TA28 containing alpha chains that were paired with V beta 1 expressing beta chains. The TCR that were photoaffinity labeled at the alpha chain expressed these J alpha and V beta segments. The tryptophan encoded by the J alpha TA28 segment is rarely found in other J alpha segments. Moreover, we show that the IASA group interacts preferentially with tryptophan in aqueous solution. We thus propose that for these CTL clones, labeling of the alpha chain occurs via the J alpha-encoded tryptophan residue.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Neuropeptide Y (NPY) is a potent inhibitor of neurotransmitter release through the Y2 receptor subtype. Specific antagonists for the Y2 receptors have not yet been described. Based on the concept of template-assembled synthetic proteins we have used a cyclic template molecule containing two beta-turn mimetics for covalent attachment of four COOH-terminal fragments RQRYNH2 (NPY 33-36), termed T4-[NPY(33-36)]4. This structurally defined template-assembled synthetic protein has been tested for binding using SK-N-MC and LN319 cell lines that express the Y1 and Y2 receptor, respectively. T4-[NPY(33-36)]4 binds to the Y2 receptor with high affinity (IC50 = 67.2 nM) and has poor binding to the Y1 receptor. This peptidomimetic tested on LN319 cells at concentrations up to 10 microM shows no inhibitory effect on forskolin-stimulated cAMP levels (IC50 for NPY = 2.5 nM). Furthermore, we used confocal microscopy to examine the NPY-induced increase in intracellular calcium in single LN319 cells. Preincubation of the cells with T4-[NPY(33-36)]4 shifted to the right the dose-response curves for intracellular mobilization of calcium induced by NPY at concentrations ranging from 0.1 nM to 10 microM. Finally, we assessed the competitive antagonistic properties of T4-[NPY(33-36)]4 at presynaptic peptidergic Y2 receptors modulating noradrenaline release. the compound T4-[NPY(33-36)]4 caused a marked shift to the right of the concentration-response curve of NPY 13-36, a Y2-selective fragment, yielding a pA2 value of 8.48. Thus, to our best knowledge, T4-[NPY(33-36)]4 represents the first potent and selective Y2 antagonist.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Toll-like receptors (TLRs) are key mediators of the innate immune response to microbial pathogens. We investigated the role of TLRs in the recognition of Mycobacterium leprae and the significance of TLR2Arg(677)Trp, a recently discovered human polymorphism that is associated with lepromatous leprosy. In mice, TNF-alpha production in response to M. leprae was essentially absent in TLR2-deficient macrophages. Similarly, human TLR2 mediated M. leprae-dependent activation of NF-kappaB in transfected Chinese hamster ovary and human embryonic kidney 293 cells, with enhancement of this signaling in the presence of CD14. In contrast, activation of NF-kappaB by human TLR2Arg(677)Trp was abolished in response to M. leprae and Mycobacterium tuberculosis. The impaired function of this TLR2 variant provides a molecular mechanism for the poor cellular immune response associated with lepromatous leprosy and may have important implications for understanding the pathogenesis of other mycobacterial infections.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

T cells belong to two mutually exclusive lineages expressing either alpha beta or gamma delta T-cell receptors (TCR). Although alpha beta and gamma delta cells are known to share a common precursor the role of TCR rearrangement and specificity in the lineage commitment process is controversial. Instructive lineage commitment models endow the alpha beta or gamma delta TCR with a deterministic role in lineage choice, whereas separate lineage models invoke TCR-independent lineage commitment followed by TCR-dependent selection and maturation of alpha beta and gamma delta cells. Here we review the published data pertaining to the role of the TCR in alpha beta/gamma delta lineage commitment and provide some additional information obtained from recent intracellular TCR staining studies. We conclude that a variant of the separate lineage model is best able to accommodate all of the available experimental results.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

SummaryLow-density lipoproteins (LDLs) have an important physiological role in organism transporting cholesterol and other fatty substances to target tissues. However, elevated LDL levels in the blood are associated with the formation of arterial plaques and consequently atherosclerosis. It is therefore important to characterize the intracellular pathways induced upon LDL stimulation as they might be involved in the pathological properties of these lipoproteins. It has been previously found that LDL stimulation of mouse embryonic fibroblasts activates p38 mitogen activated protein kinases (MAPKs). This leads to cell spreading and increase in the wound healing capabilities of the cells. These two responses might occur within atherosclerotic plaques.The aim of this project is to reveal the missing links between LDL particle and activation of p38 MAPK kinase. As previously shown in our lab activation of p38 MAPK kinase by the LDL particles occur independently of classical LDL receptor (LDLR). In this study we have shown that scavenger receptor type Β class I (SR-BI) is responsible for the signal transduction from the LDLs to the p38 MAPK. We have also shown that Mitogen activated kinase kinases (MKKs) that can directly activate ρ 38 MAPK in these conditions are MKK3 and MKK6 but not MKK4. We have also tested some of the intermediate components of the pathway like Ras and PI3 kinase but found that they do not play a role.The data obtained in this study showed a part of molecular mechanism responsible for p38 MAPK activation and subsequent wound healing and can contribute to our knowledge on function of the fibroblasts in the development of the atherosclerotic plaques.Diabetes Mellitus is a condition caused by disordered metabolism of blood glucose level. It is one of the most commonly spread disease in the western world, with the incidence reaching 8% of population in United States. Two most common types of diabetes are type 1 and 2 that differs slightly in the mechanism of the development. However in the basis of both types lies the cell death of pancreatic beta cells. The aim of this work is to improve beta cells survival in different pathophysiological settings. This could be extrapolated to the conditions in which Diabetes develops in humans. We decided to use RasGAP- derived fragment Ν with its strong antiapoptotic effect in beta cells. In our lab we have demonstrated that in the mild stress conditions RasGAP can be cleaved by caspases at the position 455 producing two fragments, fragment Ν and fragment C. Fragment Ν exerts

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The peroxisome proliferator-activated receptor (PPAR) family comprises three distinct isotypes: PPARalpha, PPARbeta/delta and PPARgamma. PPARs are nuclear hormone receptors that mediate the effects of fatty acids and their derivatives at the transcriptional level. Until recently, the characterisation of the important role of PPARalpha in fatty acid oxidation and of PPARgamma in lipid storage contrasted with the sparse information concerning PPARbeta/delta. However, evidence is now emerging for a role of PPARbeta/delta in tissue repair and energy homeostasis. Experiments with tissue-specific overexpression of PPARbeta/delta or treatment of mice with selective PPARbeta/delta agonists demonstrated that activation of PPARbeta/delta in vivo increases lipid catabolism in skeletal muscle, heart and adipose tissue and improves the serum lipid profile and insulin sensitivity in several animal models. PPARbeta/delta activation also prevents the development of obesity and improves cholesterol homeostasis in obesity-prone mouse models. These new insights into PPARbeta/delta functions suggest that targeting PPARbeta/delta may be helpful for treating disorders associated with the metabolic syndrome. Although these perspectives are promising, several independent and contradictory reports raise concerns about the safety of PPARbeta/delta ligands with respect to tumourigenic activity in the gut. Thus, it appears that further exploration of PPARbeta/delta functions is necessary to better define its potential as a therapeutic target.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Pharmacological treatment of hypertension represents a cost-effective way of preventing cardiovascular and renal complications. To benefit maximally from antihypertensive treatment, blood pressure should be brought to below 140/90 mmHg in every hypertensive patient, and even lower (< 130/80 mmHg) if diabetes or renal disease co-exists. Such targets cannot usually be reached using monotherapies. This is especially true in patients who present with a high cardiovascular risk. The co-administration of two agents acting by different mechanisms considerably increases the blood pressure control rate. Such combinations are not only efficacious, but are also well tolerated, and some fixed low-dose combinations even have a placebo-like tolerability. This is the case for the preparation containing the angiotensin-converting enzyme inhibitor perindopril (2 mg) and the diuretic indapamide (0.625 mg), a fixed low-dose combination that has been shown in controlled trials to be more effective than monotherapies in reducing albuminuria, regressing cardiac hypertrophy and improving the stiffness of large arteries. Using this combination to initiate antihypertensive therapy has been shown in a double-blind trial (Strategies of Treatment in Hypertension: Evaluation; STRATHE) to normalize blood pressure (< 140/90 mmHg) in significantly more patients (62%) than a sequential monotherapy approach based on atenolol, losartan and amlodipine (49%) and a stepped-care strategy based on valsartan and hydrochlorothiazide (47%), with no difference between the three arm groups in terms of tolerability. An ongoing randomized trial (Action in Diabetes and Vascular Disease: Preterax and Diamicron Modified Release Controlled Evaluation; ADVANCE) is a study with a 2 x 2 factorial design assessing the effects of the fixed-dose perindopril-indapamide combination and of the intensive gliclazide modified release-based glucose control regimen in type 2 diabetic patients, with or without hypertension. A total of 11 140 patients were randomly selected. Within the first 6 weeks of treatment (run-in phase), the perindopril-indapamide combination lowered blood pressure from 145/81 +/- 22/11 mmHg (mean +/- SD) to 137/78 +/- 20/10 mmHg. Fixed-dose combinations are becoming more and more popular for the management of hypertension, and are even proposed by hypertension guidelines as a first-line option to treat hypertensive patients.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

BACKGROUND: Leprosy is characterized by a spectrum of clinical manifestations that depend on the type of immune response against the pathogen. Patients may undergo immunological changes known as "reactional states" (reversal reaction and erythema nodosum leprosum) that result in major clinical deterioration. The goal of the present study was to assess the effect of Toll-like receptor 2 (TLR2) polymorphisms on susceptibility to and clinical presentation of leprosy. METHODS: Three polymorphisms in TLR2 (597C--&gt;T, 1350T--&gt;C, and a microsatellite marker) were analyzed in 431 Ethiopian patients with leprosy and 187 control subjects. The polymorphism-associated risk of developing leprosy, lepromatous (vs. tuberculoid) leprosy, and leprosy reactions was assessed by multivariate logistic regression models. RESULTS: The microsatellite and the 597C--&gt;T polymorphisms both influenced susceptibility to reversal reaction. Although the 597T allele had a protective effect (odds ratio [OR], 0.34 [95% confidence interval {CI}, 0.17-0.68]; P= .002 under the dominant model), homozygosity for the 280-bp allelic length of the microsatellite strongly increased the risk of reversal reaction (OR, 5.83 [95% CI, 1.98-17.15]; P= .001 under the recessive model). These associations were consistent among 3 different ethnic groups. CONCLUSIONS: These data suggest a significant role for TLR-2 in the occurrence of leprosy reversal reaction and provide new insights into the immunogenetics of the disease.