241 resultados para 3D gravity modelling


Relevância:

20.00% 20.00%

Publicador:

Resumo:

While 3D thin-slab coronary magnetic resonance angiography (MRA) has traditionally been performed using a Cartesian acquisition scheme, spiral k-space data acquisition offers several potential advantages. However, these strategies have not been directly compared in the same subjects using similar methodologies. Thus, in the present study a comparison was made between 3D coronary MRA using Cartesian segmented k-space gradient-echo and spiral k-space data acquisition schemes. In both approaches the same spatial resolution was used and data were acquired during free breathing using navigator gating and prospective slice tracking. Magnetization preparation (T(2) preparation and fat suppression) was applied to increase the contrast. For spiral imaging two different examinations were performed, using one or two spiral interleaves, during each R-R interval. Spiral acquisitions were found to be superior to the Cartesian scheme with respect to the signal-to-noise ratio (SNR) and contrast-to-noise-ratio (CNR) (both P < 0.001) and image quality. The single spiral per R-R interval acquisition had the same total scan duration as the Cartesian acquisition, but the single spiral had the best image quality and a 2.6-fold increase in SNR. The double-interleaf spiral approach showed a 50% reduction in scanning time, a 1.8-fold increase in SNR, and similar image quality when compared to the standard Cartesian approach. Spiral 3D coronary MRA appears to be preferable to the Cartesian scheme. The increase in SNR may be "traded" for either shorter scanning times using multiple consecutive spiral interleaves, or for enhanced spatial resolution.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The velocity of a liquid slug falling in a capillary tube is lower than predicted for Poiseuille flow due to presence of menisci, whose shapes are determined by the complex interplay of capillary, viscous, and gravitational forces. Due to the presence of menisci, a capillary pressure proportional to surface curvature acts on the slug and streamlines are bent close to the interface, resulting in enhanced viscous dissipation at the wedges. To determine the origin of drag-force increase relative to Poiseuille flow, we compute the force resultant acting on the slug by integrating Navier-Stokes equations over the liquid volume. Invoking relationships from differential geometry we demonstrate that the additional drag is due to viscous forces only and that no capillary drag of hydrodynamic origin exists (i.e., due to hydrodynamic deformation of the interface). Requiring that the force resultant is zero, we derive scaling laws for the steady velocity in the limit of small capillary numbers by estimating the leading order viscous dissipation in the different regions of the slug (i.e., the unperturbed Poiseuille-like bulk, the static menisci close to the tube axis and the dynamic regions close to the contact lines). Considering both partial and complete wetting, we find that the relationship between dimensionless velocity and weight is, in general, nonlinear. Whereas the relationship obtained for complete-wetting conditions is found in agreement with the experimental data of Bico and Quere [J. Bico and D. Quere, J. Colloid Interface Sci. 243, 262 (2001)], the scaling law under partial-wetting conditions is validated by numerical simulations performed with the Volume of Fluid method. The simulated steady velocities agree with the behavior predicted by the theoretical scaling laws in presence and in absence of static contact angle hysteresis. The numerical simulations suggest that wedge-flow dissipation alone cannot account for the entire additional drag and that the non-Poiseuille dissipation in the static menisci (not considered in previous studies) has to be considered for large contact angles.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The noise power spectrum (NPS) is the reference metric for understanding the noise content in computed tomography (CT) images. To evaluate the noise properties of clinical multidetector (MDCT) scanners, local 2D and 3D NPSs were computed for different acquisition reconstruction parameters.A 64- and a 128-MDCT scanners were employed. Measurements were performed on a water phantom in axial and helical acquisition modes. CT dose index was identical for both installations. Influence of parameters such as the pitch, the reconstruction filter (soft, standard and bone) and the reconstruction algorithm (filtered-back projection (FBP), adaptive statistical iterative reconstruction (ASIR)) were investigated. Images were also reconstructed in the coronal plane using a reformat process. Then 2D and 3D NPS methods were computed.In axial acquisition mode, the 2D axial NPS showed an important magnitude variation as a function of the z-direction when measured at the phantom center. In helical mode, a directional dependency with lobular shape was observed while the magnitude of the NPS was kept constant. Important effects of the reconstruction filter, pitch and reconstruction algorithm were observed on 3D NPS results for both MDCTs. With ASIR, a reduction of the NPS magnitude and a shift of the NPS peak to the low frequency range were visible. 2D coronal NPS obtained from the reformat images was impacted by the interpolation when compared to 2D coronal NPS obtained from 3D measurements.The noise properties of volume measured in last generation MDCTs was studied using local 3D NPS metric. However, impact of the non-stationarity noise effect may need further investigations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

1. The ecological niche is a fundamental biological concept. Modelling species' niches is central to numerous ecological applications, including predicting species invasions, identifying reservoirs for disease, nature reserve design and forecasting the effects of anthropogenic and natural climate change on species' ranges. 2. A computational analogue of Hutchinson's ecological niche concept (the multidimensional hyperspace of species' environmental requirements) is the support of the distribution of environments in which the species persist. Recently developed machine-learning algorithms can estimate the support of such high-dimensional distributions. We show how support vector machines can be used to map ecological niches using only observations of species presence to train distribution models for 106 species of woody plants and trees in a montane environment using up to nine environmental covariates. 3. We compared the accuracy of three methods that differ in their approaches to reducing model complexity. We tested models with independent observations of both species presence and species absence. We found that the simplest procedure, which uses all available variables and no pre-processing to reduce correlation, was best overall. Ecological niche models based on support vector machines are theoretically superior to models that rely on simulating pseudo-absence data and are comparable in empirical tests. 4. Synthesis and applications. Accurate species distribution models are crucial for effective environmental planning, management and conservation, and for unravelling the role of the environment in human health and welfare. Models based on distribution estimation rather than classification overcome theoretical and practical obstacles that pervade species distribution modelling. In particular, ecological niche models based on machine-learning algorithms for estimating the support of a statistical distribution provide a promising new approach to identifying species' potential distributions and to project changes in these distributions as a result of climate change, land use and landscape alteration.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Knowledge about spatial biodiversity patterns is a basic criterion for reserve network design. Although herbarium collections hold large quantities of information, the data are often scattered and cannot supply complete spatial coverage. Alternatively, herbarium data can be used to fit species distribution models and their predictions can be used to provide complete spatial coverage and derive species richness maps. Here, we build on previous effort to propose an improved compositionalist framework for using species distribution models to better inform conservation management. We illustrate the approach with models fitted with six different methods and combined using an ensemble approach for 408 plant species in a tropical and megadiverse country (Ecuador). As a complementary view to the traditional richness hotspots methodology, consisting of a simple stacking of species distribution maps, the compositionalist modelling approach used here combines separate predictions for different pools of species to identify areas of alternative suitability for conservation. Our results show that the compositionalist approach better captures the established protected areas than the traditional richness hotspots strategies and allows the identification of areas in Ecuador that would optimally complement the current protection network. Further studies should aim at refining the approach with more groups and additional species information.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Introduction. Quantification of daily upper-limb activity is a key determinant in evaluation of shoulder surgery. For a number of shoulder diseases, problem in performing daily activities have been expressed in terms of upper-limb usage and non-usage. Many instruments measure upper-limb movement but do not focus on the differentiations between the use of left or right shoulder. Several methods have been used to measure it using only accelerometers, pressure sensors or video-based analysis. However, there is no standard or widely used objective measure for upper-limb movement. We report here on an objective method to measure the movement of upper-limb and we examined the use of 3D accelerometers and 3D gyroscopes for that purpose. Methods. We studied 8 subjects with unilateral pathological shoulder (8 rotator cuff disease: 53 years old ± 8) and compared them to 18 control subjects (10 right handed, 8 left handed: 32 years old ± 8, younger than the patient group to be almost sure they don_t have any unrecognized shoulder pathology). The Simple Shoulder Test (SST) and Disabilities of the Arm and Shoulder Score (DASH) questionnaires were completed by each subject. Two modules with 3 miniature capacitive gyroscopes and 3 miniature accelerometers were fixed by a patch on the dorsal side of the distal humerus, and one module with 3 gyroscopes and 3 accelerometers were fixed on the thorax. The subject wore the system during one day (8 hours), at home or wherever he/she went. We used a technique based on the 3D acceleration and the 3D angular velocities from the modules attached on the humerus. Results. As expected, we observed that for the stand and sit postures the right side is more used than the left side for a healthy right-handed person(idem on the left side for a healthy left-handed person). Subjects used their dominant upper-limb 18% more than the non-dominant upper-limb. The measurements on patients in daily life have shown that the patient has used more his non affected and non dominant side during daily activity if the dominant side = affected shoulder. If the dominant side affected shoulder, the difference can be showed only during walking period. Discussion-Conclusion. The technique developed and used allowed the quantification of the difference between dominant and non dominant side, affected and unaffected upper-limb activity. These results were encouraging for future evaluation of patients with shoulder injuries, before and after surgery. The feasibility and patient acceptability of the method using body fixed sensors for ambulatory evaluation of upper limbs kinematics was shown.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The infiltration of river water into aquifers is of high relevance to drinking-water production and is a key driver of biogeochemical processes in the hyporheic and riparian zone, but the distribution and quantification of the infiltrating water are difficult to determine using conventional hydrological methods (e.g., borehole logging and tracer tests). By time-lapse inverting crosshole ERT (electrical resistivity tomography) monitoring data, we imaged groundwater flow patterns driven by river water infiltrating a perialpine gravel aquifer in northeastern Switzerland. This was possible because the electrical resistivity of the infiltrating water changed during rainfall-runoff events. Our time-lapse resistivity models indicated rather complex flow patterns as a result of spatially heterogeneous bank filtration and aquifer heterogeneity. The upper part of the aquifer was most affected by the river infiltrate, and the highest groundwater velocities and possible preferential flow occurred at shallow to intermediate depths. Time series of the reconstructed resistivity models matched groundwater electrical resistivity data recorded on borehole loggers in the upper and middle parts of the aquifer, whereas the resistivity models displayed smaller variations and delayed responses with respect to the logging data. in the lower part. This study demonstrated that crosshole ERT monitoring of natural electrical resistivity variations of river infiltrate could be used to image and quantify 3D bank filtration and aquifer dynamics at a high spatial resolution.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

OBJECTIVE: Our objective was to compare two state-of-the-art coronary MRI (CMRI) sequences with regard to image quality and diagnostic accuracy for the detection of coronary artery disease (CAD). SUBJECTS AND METHODS: Twenty patients with known CAD were examined with a navigator-gated and corrected free-breathing 3D segmented gradient-echo (turbo field-echo) CMRI sequence and a steady-state free precession sequence (balanced turbo field-echo). CMRI was performed in a transverse plane for the left coronary artery and a double-oblique plane for the right coronary artery system. Subjective image quality (1- to 4-point scale, with 1 indicating excellent quality) and objective image quality parameters were independently determined for both sequences. Sensitivity, specificity, and accuracy for the detection of significant (> or = 50% diameter) coronary artery stenoses were determined as defined in invasive catheter X-ray coronary angiography. RESULTS: Subjective image quality was superior for the balanced turbo field-echo approach (1.8 +/- 0.9 vs 2.3 +/- 1.0 for turbo field-echo; p < 0.001). Vessel sharpness, signal-to-noise ratio, and contrast-to-noise ratio were all superior for the balanced turbo field-echo approach (p < 0.01 for signal-to-noise ratio and contrast-to-noise ratio). Of the 103 segments, 18% of turbo field-echo segments and 9% of balanced turbo field-echo segments had to be excluded from disease evaluation because of insufficient image quality. Sensitivity, specificity, and accuracy for the detection of significant coronary artery stenoses in the evaluated segments were 92%, 67%, 85%, respectively, for turbo field-echo and 82%, 82%, 81%, respectively, for balanced turbo field-echo. CONCLUSION: Balanced turbo field-echo offers improved image quality with significantly fewer nondiagnostic segments when compared with turbo field-echo. For the detection of CAD, both sequences showed comparable accuracy for the visualized segments.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Sustainable resource use is one of the most important environmental issues of our times. It is closely related to discussions on the 'peaking' of various natural resources serving as energy sources, agricultural nutrients, or metals indispensable in high-technology applications. Although the peaking theory remains controversial, it is commonly recognized that a more sustainable use of resources would alleviate negative environmental impacts related to resource use. In this thesis, sustainable resource use is analysed from a practical standpoint, through several different case studies. Four of these case studies relate to resource metabolism in the Canton of Geneva in Switzerland: the aim was to model the evolution of chosen resource stocks and flows in the coming decades. The studied resources were copper (a bulk metal), phosphorus (a vital agricultural nutrient), and wood (a renewable resource). In addition, the case of lithium (a critical metal) was analysed briefly in a qualitative manner and in an electric mobility perspective. In addition to the Geneva case studies, this thesis includes a case study on the sustainability of space life support systems. Space life support systems are systems whose aim is to provide the crew of a spacecraft with the necessary metabolic consumables over the course of a mission. Sustainability was again analysed from a resource use perspective. In this case study, the functioning of two different types of life support systems, ARES and BIORAT, were evaluated and compared; these systems represent, respectively, physico-chemical and biological life support systems. Space life support systems could in fact be used as a kind of 'laboratory of sustainability' given that they represent closed and relatively simple systems compared to complex and open terrestrial systems such as the Canton of Geneva. The chosen analysis method used in the Geneva case studies was dynamic material flow analysis: dynamic material flow models were constructed for the resources copper, phosphorus, and wood. Besides a baseline scenario, various alternative scenarios (notably involving increased recycling) were also examined. In the case of space life support systems, the methodology of material flow analysis was also employed, but as the data available on the dynamic behaviour of the systems was insufficient, only static simulations could be performed. The results of the case studies in the Canton of Geneva show the following: were resource use to follow population growth, resource consumption would be multiplied by nearly 1.2 by 2030 and by 1.5 by 2080. A complete transition to electric mobility would be expected to only slightly (+5%) increase the copper consumption per capita while the lithium demand in cars would increase 350 fold. For example, phosphorus imports could be decreased by recycling sewage sludge or human urine; however, the health and environmental impacts of these options have yet to be studied. Increasing the wood production in the Canton would not significantly decrease the dependence on wood imports as the Canton's production represents only 5% of total consumption. In the comparison of space life support systems ARES and BIORAT, BIORAT outperforms ARES in resource use but not in energy use. However, as the systems are dimensioned very differently, it remains questionable whether they can be compared outright. In conclusion, the use of dynamic material flow analysis can provide useful information for policy makers and strategic decision-making; however, uncertainty in reference data greatly influences the precision of the results. Space life support systems constitute an extreme case of resource-using systems; nevertheless, it is not clear how their example could be of immediate use to terrestrial systems.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Respiratory motion is a major source of artifacts in cardiac magnetic resonance imaging (MRI). Free-breathing techniques with pencil-beam navigators efficiently suppress respiratory motion and minimize the need for patient cooperation. However, the correlation between the measured navigator position and the actual position of the heart may be adversely affected by hysteretic effects, navigator position, and temporal delays between the navigators and the image acquisition. In addition, irregular breathing patterns during navigator-gated scanning may result in low scan efficiency and prolonged scan time. The purpose of this study was to develop and implement a self-navigated, free-breathing, whole-heart 3D coronary MRI technique that would overcome these shortcomings and improve the ease-of-use of coronary MRI. A signal synchronous with respiration was extracted directly from the echoes acquired for imaging, and the motion information was used for retrospective, rigid-body, through-plane motion correction. The images obtained from the self-navigated reconstruction were compared with the results from conventional, prospective, pencil-beam navigator tracking. Image quality was improved in phantom studies using self-navigation, while equivalent results were obtained with both techniques in preliminary in vivo studies.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The goal of this study was to investigate the impact of computing parameters and the location of volumes of interest (VOI) on the calculation of 3D noise power spectrum (NPS) in order to determine an optimal set of computing parameters and propose a robust method for evaluating the noise properties of imaging systems. Noise stationarity in noise volumes acquired with a water phantom on a 128-MDCT and a 320-MDCT scanner were analyzed in the spatial domain in order to define locally stationary VOIs. The influence of the computing parameters in the 3D NPS measurement: the sampling distances bx,y,z and the VOI lengths Lx,y,z, the number of VOIs NVOI and the structured noise were investigated to minimize measurement errors. The effect of the VOI locations on the NPS was also investigated. Results showed that the noise (standard deviation) varies more in the r-direction (phantom radius) than z-direction plane. A 25 × 25 × 40 mm(3) VOI associated with DFOV = 200 mm (Lx,y,z = 64, bx,y = 0.391 mm with 512 × 512 matrix) and a first-order detrending method to reduce structured noise led to an accurate NPS estimation. NPS estimated from off centered small VOIs had a directional dependency contrary to NPS obtained from large VOIs located in the center of the volume or from small VOIs located on a concentric circle. This showed that the VOI size and location play a major role in the determination of NPS when images are not stationary. This study emphasizes the need for consistent measurement methods to assess and compare image quality in CT.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

PURPOSE We have previously shown that retinal stem cells (RSCs) can be isolated from the radial glia population of the newborn mouse retina (Angénieux et al., 2006). These RSCs have a great capacity to renew and to generate a large number of neurons including cells differentiated towards the photoreceptor lineage (Mehri-Soussi et al., 2006). However, recent published results from our lab revealed that such cells have a poor integration and survival rate after grafting. The uncontrolled environment of a retina seems to prevent good integration and survival after grafting in vivo. To bypass this problem, we are evaluating the possibility of generating in vitro a hemi-retinal tissue before transplantation. METHODS RSC were expanded and cells passaged <10 were seeded in a solution containing poly-ethylene-glycol (PEG) polymer based hydrogels crosslinked with peptides that are chosen to be substrates for matrix metalloproteinases. Various doses of cross linkers peptides allowing connections between PEG polymers were tested. Different growth factors were studied to stimulate cell proliferation and differentiation. RESULTS Cells survived only in the presence of EGF and FGF-2 and generated colonies with a sphere shape. No cells migrated within the gel. To improve the migration and the repartition of the cells in the gels, the integrin ligand RGDSP was added into the gel. In the presence of FGF-2 and EGF, newly formed cell clusters appeared by cell proliferation within several days, but again no outspreading of cells was observed. No difference was even seen when the stiffness of the hydrogels or the concentration of the integrin ligand RGDSP were changed. However, our preliminary results show that RSCs still form spheres when laminin is entrapped in the gel, but they started to spread out having a neuronal morphology after around 2 weeks. The neuronal population was assessed by the presence of the neuronal marker b-tubulin-III. This differentiation was achieved after successive steps of stimulations including FGF-2 and EGF, and then only FGF-2. Glial cells were also present. Further characterizations are under process. CONCLUSIONS RSC can be grown in 3D. Preliminary results show that neuronal cell phenotype acquisition can be instructed by exogenous stimulations and factors linked to the gel. Further developments are necessary to form a homogenous tissue containing retinal cells.