437 resultados para respiratory metabolism
Resumo:
Patients with defective ectodysplasin A (EDA) have X-linked hypohidrotic ectodermal dysplasia (XLHED; OMIM#305100), a condition comprising hypotrichosis, inability to sweat, abnormal teeth, and frequent pulmonary infections. The XLHED dogs show the same clinical signs as humans with the disorder, including frequent respiratory infections that can be fatal. The respiratory disease in humans and dogs is thought to be due to the absence of tracheal and bronchial glands which are a vital part of the mucociliary clearance mechanism. In our XLHED model, the genetically missing EDA was replaced by postnatal intravenous administration of recombinant EDA resulting in long-term, durable corrective effect on adult, permanent dentition. After treatment with EDA, significant correction of the missing tracheal and bronchial glands was achieved in those dogs that received higher doses of EDA. Moreover, successful treatment resulted in the presence of esophageal glands, improved mucociliary clearance, and the absence of respiratory infection. These results demonstrate that a short-term treatment at a neonatal age with a recombinant protein can reverse a developmental disease and result in vastly improved quality of life.
Resumo:
L'étude porte sur 951 porteurs d'un cancer primaire bucco-pharyngo-laryngé, et révèle un taux de multifocalité du carcinome épidermoïde sur les voies digestive supérieure (bouche-pharynx-oesophage) et aérienne distale (larynx-trachée-bronches) s'élevant à 14,5 %. Les secondes localisations peuvent être simultanées (6,4 %) ou successives (8,1 %) à la découverte du premier cancer: dès la deuxième année du follow-up leur incidence dépasse celle des récidives. Elles se localisent tant au niveau ORL (8,5 %) qu'oesophagien (3 %) ou bronchique (3 %). Le cancer du voile présente un taux de multifocalité particulièrement élevé (51 %). Les auteurs décrivent un type d'endoscopie de dépistage (bucco-pharyngo-oesophago-laryngo-trachéobronchoscopie) dont la fiabilité repose sur une technicité spécifique d'une part, et sur la connaissance des caractéristiques propres aux secondes localisations d'autre part. Ce dépistage systématique permet de détecter les tumeurs secondaires à un stade le plus souvent précoce et encore asymptomatique.
Resumo:
Introduction: Increased respiratory pattern variability is associated with improved oxygenation. Pressure support (PS) is a widely used partial-assist mechanical ventilation (MV) mode, in which each breathing cycle is initiated by flow or pressure variation at the airway due to patient inspiratory effort. Neurally adjusted ventilatory assist (NAVA) is relatively new and uses the electrical activity of the diaphragm (Eadi) to deliver ventilatory support proportional to the patient's inspiratory demand. We hypothesize that respiratory variability should be greater with NAVA compared with PS.Methods: Twenty-two patients underwent 20 minutes of PS followed by 20 minutes of NAVA. Flow and Eadi curves were used to obtain tidal volume (Vt) and ∫Eadi for 300 to 400 breaths in each patient. Patient-specific cumulative distribution functions (CDF) show the percentage Vt and ∫Eadi within a clinically defined (±10%) variability band for each patient. Values are normalized to patient-specific medians for direct comparison. Variability in Vt (outcome) is thus expressed in terms of variability in ∫Eadi (demand) on the same plot.Results: Variability in Vt relative to variability in ∫Eadi is significantly greater for NAVA than PS (P = 0.00012). Hence, greater variability in outcome Vt is obtained for a given demand in ∫Eadi, under NAVA, as illustrated in Figure 1 for a typical patient. A Fisher 2 × 2 contingency analysis showed that 45% of patients under NAVA had a Vt variability in equal proportion to ∫Eadi variability, versus 0% for PS (P < 0.05).Conclusions: NAVA yields greater variability in tidal volume, relative to ∫Eadi demand, and a better match between Vt and ∫Eadi. These results indicate that NAVA could achieve improved oxygenation compared with PS when sufficient underlying variability in ∫Eadi is present, due to its ability to achieve higher tidal volume variability from a given variability in ∫Eadi.
Resumo:
La faiblesse des muscles respiratoires peut entraîner une dyspnée, un encombrement bronchique et une insuffisance respiratoire potentiellement fatale. L'évaluation de la force musculaire respiratoire s'impose donc dans les affections neuro-musculaires, mais également dans les situations de dyspnée inexpliquée par une première évaluation cardiaque et pulmonaire. À la spirométrie, une faiblesse musculaire est suspectée sur la base de la boucle débit-volume montrant un débit de pointe émoussé et une fin prématurée de l'expiration. Une diminution importante de la capacité vitale en position couchée suggère une paralysie diaphragmatique. La force inspiratoire est mesurée par la pression inspiratoire maximale (PImax) contre une quasi-occlusion des voies aériennes. Ce test relativement difficile est d'interprétation délicate en cas de collaboration insuffisante. La mesure de la pression nasale sniff (SNIP) est une alternative utile, car elle élimine le problème des fuites autour de l'embout buccal et la réalisation du reniflement est facile. De même, la pression trans-diaphragmatique sniff mesure la force du diaphragme au moyen de sondes oesophagienne et gastrique. En cas de collaboration insuffisante, on peut recourir à la stimulation magnétique des nerfs phréniques qui induit une contraction non-volontaire du diaphragme. La force expiratoire est mesurée par la pression expiratoire maximale (PEmax) contre une quasi-occlusion. La force disponible pour tousser est mesurée par la pression gastrique à la toux, ou plus simplement par le débit de pointe à la toux. Chez les patients à risque, la mesure de la force des muscles respiratoires permet d'instaurer à temps une assistance ventilatoire ou à la toux.
Resumo:
Routine screening of lung transplant recipients and hospital patients for respiratory virus infections allowed to identify human rhinovirus (HRV) in the upper and lower respiratory tracts, including immunocompromised hosts chronically infected with the same strain over weeks or months. Phylogenetic analysis of 144 HRV-positive samples showed no apparent correlation between a given viral genotype or species and their ability to invade the lower respiratory tract or lead to protracted infection. By contrast, protracted infections were found almost exclusively in immunocompromised patients, thus suggesting that host factors rather than the virus genotype modulate disease outcome, in particular the immune response. Complete genome sequencing of five chronic cases to study rhinovirus genome adaptation showed that the calculated mutation frequency was in the range observed during acute human infections. Analysis of mutation hot spot regions between specimens collected at different times or in different body sites revealed that non-synonymous changes were mostly concentrated in the viral capsid genes VP1, VP2 and VP3, independent of the HRV type. In an immunosuppressed lung transplant recipient infected with the same HRV strain for more than two years, both classical and ultra-deep sequencing of samples collected at different time points in the upper and lower respiratory tracts showed that these virus populations were phylogenetically indistinguishable over the course of infection, except for the last month. Specific signatures were found in the last two lower respiratory tract populations, including changes in the 5'UTR polypyrimidine tract and the VP2 immunogenic site 2. These results highlight for the first time the ability of a given rhinovirus to evolve in the course of a natural infection in immunocompromised patients and complement data obtained from previous experimental inoculation studies in immunocompetent volunteers.
Resumo:
Duchenne muscular dystrophy is is the most common form of the childhood muscular dystrophies. It follows a predictable clinical course marked by progressive skeletal muscle weakness, lost of ambulation before teen-age and death in early adulthood secondary to respiratory or cardiac failure. Becker muscular dystrophy is less common and has a milder clinical course but also results in respiratory and cardiac failure.Altough recent advances in respiratory care and new technologies have improved the outlook many patients already received only a traditional non-interventional approach. The aims of this work are: to analyse the pathophysiology and natural history of respiratory function in these diseases, to descript their clinical manifestations, to present the diagnostics tools and to provide recommendations for an adequated respiratory care in this particular population based on the updated literature referenced.
Resumo:
Neurodegenerative and psychiatric disorders including Alzheimer's, Parkinson's or Huntington's diseases and schizophrenia have been associated with a deficit in glutathione (GSH). In particular, a polymorphism in the gene of glutamate cysteine ligase modulatory subunit (GCLM) is associated with schizophrenia. GSH is the most important intracellular antioxidant and is necessary for the removal of reactive by-products generated by the utilization of glucose for energy supply. Furthermore, glucose metabolism through the pentose phosphate pathway is a major source of NADPH, the cofactor necessary for the regeneration of reduced glutathione. This study aims at investigating glucose metabolism in cultured astrocytes from GCLM knockout mice, which show decreased GSH levels. No difference in the basal metabolism of glucose was observed between wild-type and knockout cells. In contrast, glycogen levels were lower and its turnover was higher in knockout astrocytes. These changes were accompanied by a decrease in the expression of the genes involved in its synthesis and degradation, including the protein targeting to glycogen. During an oxidative challenge induced by tert-Butylhydroperoxide, wild-type cells increased their glycogen mobilization and glucose uptake. However, knockout astrocytes were unable to mobilize glycogen following the same stress and they could increase their glucose utilization only following a major oxidative insult. Altogether, these results show that glucose metabolism and glycogen utilization are dysregulated in astrocytes showing a chronic deficit in GSH, suggesting that alterations of a fundamental aspect of brain energy metabolism is caused by GSH deficit and may therefore be relevant to metabolic dysfunctions observed in schizophrenia.
Resumo:
Originally composed of the single family Chlamydiaceae, the Chlamydiales order has extended considerably over the last several decades. Chlamydia-related bacteria were added and classified into six different families and family-level lineages: the Criblamydiaceae, Parachlamydiaceae, Piscichlamydiaceae, Rhabdochlamydiaceae, Simkaniaceae, and Waddliaceae. While several members of the Chlamydiaceae family are known pathogens, recent studies showed diverse associations of Chlamydia-related bacteria with human and animal infections. Some of these latter bacteria might be of medical importance since, given their ability to replicate in free-living amoebae, they may also replicate efficiently in other phagocytic cells, including cells of the innate immune system. Thus, a new Chlamydiales-specific real-time PCR targeting the conserved 16S rRNA gene was developed. This new molecular tool can detect at least five DNA copies and show very high specificity without cross-amplification from other bacterial clade DNA. The new PCR was validated with 128 clinical samples positive or negative for Chlamydia trachomatis or C. pneumoniae. Of 65 positive samples, 61 (93.8%) were found to be positive with the new PCR. The four discordant samples, retested with the original test, were determined to be negative or below detection limits. Then, the new PCR was applied to 422 nasopharyngeal swabs taken from children with or without pneumonia; a total of 48 (11.4%) samples were determined to be positive, and 45 of these were successfully sequenced. The majority of the sequences corresponded to Chlamydia-related bacteria and especially to members of the Parachlamydiaceae family.
Resumo:
The carbon dioxide production of the chick embryo cultured in vitro has been determined during the first 24 h of post-laying development using a non-invasive conductometric microtechnique. The mean CO2 production of the whole blastoderm (1) increased from 16 nmol/h at laying to 231 nmol/h at early neurulation, (2) became dependent on exogenous glucose and (3) was closely linked to mechanical tension generated in the blastoderm (loosening from vitelline membrane resulted in a decrease of 56%). In our experimental conditions, no significant influence of carbonic anhydrase on the CO2 production has been detected. The value of the respiratory exchange ratio varied from about 3 at pregastrular stages to 1 at neurula stage and CO2 was produced transiently in presence of antimycin A. Such results indicate that the source of CO2 is not exclusively mitochondrial and that the relative proportions of mitochondrial and non-mitochondrial CO2 productions might vary significantly throughout the early development. Our findings confirm that the metabolism of the chick embryo becomes more and more oxidative from laying onwards and suggest that the modifications of metabolism observed during the studied period of development could be associated with functional differentiation.
Resumo:
BACKGROUND: To perform a comprehensive study on the relationship between vitamin D metabolism and the response to interferon-α-based therapy of chronic hepatitis C. METHODOLOGY/PRINCIPAL FINDINGS: Associations between a functionally relevant polymorphism in the gene encoding the vitamin D 1α-hydroxylase (CYP27B1-1260 rs10877012) and the response to treatment with pegylated interferon-α (PEG-IFN-α) and ribavirin were determined in 701 patients with chronic hepatitis C. In addition, associations between serum concentrations of 25-hydroxyvitamin D(3) (25[OH]D(3)) and treatment outcome were analysed. CYP27B1-1260 rs10877012 was found to be an independent predictor of sustained virologic response (SVR) in patients with poor-response IL28B genotypes (15% difference in SVR for rs10877012 genotype AA vs. CC, p = 0.02, OR = 1.52, 95% CI = 1.061-2.188), but not in patients with favourable IL28B genotype. Patients with chronic hepatitis C showed a high prevalence of vitamin D insufficiency (25[OH]D(3)<20 ng/mL) during all seasons, but 25(OH)D(3) serum levels were not associated with treatment outcome. CONCLUSIONS/SIGNIFICANCE: Our study suggests a role of bioactive vitamin D (1,25[OH](2)D(3), calcitriol) in the response to treatment of chronic hepatitis C. However, serum concentration of the calcitriol precursor 25(OH)D(3) is not a suitable predictor of treatment outcome.
Resumo:
Visceral adiposity is increasingly recognized as a key condition for the development of obesity related disorders, with the ratio between visceral adipose tissue (VAT) and subcutaneous adipose tissue (SAT) reported as the best correlate of cardiometabolic risk. In this study, using a cohort of 40 obese females (age: 25-45 y, BMI: 28-40 kg/m(2)) under healthy clinical conditions and monitored over a 2 weeks period we examined the relationships between different body composition parameters, estimates of visceral adiposity and blood/urine metabolic profiles. Metabonomics and lipidomics analysis of blood plasma and urine were employed in combination with in vivo quantitation of body composition and abdominal fat distribution using iDXA and computerized tomography. Of the various visceral fat estimates, VAT/SAT and VAT/total abdominal fat ratios exhibited significant associations with regio-specific body lean and fat composition. The integration of these visceral fat estimates with metabolic profiles of blood and urine described a distinct amino acid, diacyl and ether phospholipid phenotype in women with higher visceral fat. Metabolites important in predicting visceral fat adiposity as assessed by Random forest analysis highlighted 7 most robust markers, including tyrosine, glutamine, PC-O 44∶6, PC-O 44∶4, PC-O 42∶4, PC-O 40∶4, and PC-O 40∶3 lipid species. Unexpectedly, the visceral fat associated inflammatory profiles were shown to be highly influenced by inter-days and between-subject variations. Nevertheless, the visceral fat associated amino acid and lipid signature is proposed to be further validated for future patient stratification and cardiometabolic health diagnostics.
Resumo:
BACKGROUND: The incidence and outcomes of respiratory viral infections in lung transplant recipients (LTR) are not well defined. The objective of this prospective study conducted from June 2008 to March 2011 was to characterise the incidence and outcomes of viral respiratory infections in LTR. METHODS: Patients were seen in three contexts: study-specific screenings covering all seasons; routine post-transplantation follow-up; and emergency visits. Nasopharyngeal specimens were collected systematically and bronchoalveolar lavage (BAL) was performed when clinically indicated. All specimens underwent testing with a wide panel of molecular assays targeting respiratory viruses. RESULTS: One hundred and twelve LTR had 903 encounters: 570 (63%) were screening visits, 124 (14%) were routine post-transplantation follow-up and 209 (23%) were emergency visits. Respiratory viruses were identified in 174 encounters, 34 of these via BAL. The incidence of infection was 0.83 per patient-year (95% CI 0.45 to 1.52). The viral infection rates upon screening, routine and emergency visits were 14%, 15% and 34%, respectively (p<0.001). Picornavirus was identified most frequently in nasopharyngeal (85/140; 60.7%) and BAL specimens (20/34; 59%). Asymptomatic viral carriage, mainly of picornaviruses, was found at 10% of screening visits. Infections were associated with transient lung function loss and high calcineurin inhibitor blood levels. The hospitalisation rate was 50% (95% CI 30% to 70.9%) for influenza and parainfluenza and 16.9% (95% CI 11.2% to 23.9%) for other viruses. Acute rejection was not associated with viral infection (OR 0.4, 95% CI 0.1 to 1.3). CONCLUSIONS: There is a high incidence of viral infection in LTR; asymptomatic carriage is rare. Viral infections contribute significantly to this population's respiratory symptomatology. No temporal association was observed between infection and acute rejection.
Resumo:
Rapport de synthèse : La consommation de boissons sucrées contenant du fructose a remarquablement augmenté ces dernières décennies et, on pense qu'elle joue un rôle important dans l'épidémie actuelle d'obésité et de troubles métaboliques. Des études faites sur des rats ont montré qu'une alimentation riche en sucre ou fructose induisait une obésité, une résistance à l'insuline, diabète, dyslipidémie et une hypertension artérielle, tandis que chez l'homme, une alimentation riche en fructose conduit, après quelques jours, au développement d'une hypertryglycémie et une résistance hépatique à l'insuline. Nous avons entrepris une étude de 7 jours d'alimentation riche en fructose ou d'une alimentation contrôlée chez six hommes en bonne santé. Les NEFA plasmatiques et la beta-hydroxybutyrate, l'oxydation nette de lipide (calorimétrie indirecte) et l'oxydation exogène de lipide (13 CO2) ont été surveillés dans des conditions basales, et après un chargement en lipide (huile d'olive marqué au 13C-trioléine), puis durant un stress mental standardisé. La clearance de lactate et les effets métaboliques de la perfusion de lactate exogène ont également été évalués. Nos résultats ont montré que l'alimentation riche en fructose diminue la concentration plasmatique de NEFA, de beta-hydroxybutyrate de même que l'oxydation des lipides dans les conditions de bases et après surcharge en lipides. De plus, l'alimentation riche en fructose amortie l'augmentation des NEFA plasmatique et l'oxydation des lipides exogènes durant le stress mental. Elle augmente également la concentration basale de lactate et la production de lactate de respectivement 31.8% et 53.8%, tandis que la clearance du lactate reste inchangée. L'injection de lactate diminue le taux des NEFA lors de l'alimentation de contrôle et l'alimentation de base, et l'oxydation nette de lipide lors de l'alimentation de contrôle et l'alimentation riche en fructose. Ces résultats indiquent que 7 jours d'alimentation riche en fructose inhibent remarquablement la lipolyse et l'oxydation des lipides. L'alimentation riche en fructose augmente aussi la production de lactate, et l'augmentation de l'utilisation de lactate peut contribuer à supprimer l'oxydation des lipides. Abstact : The effects of a 7 d high-fructose diet (HFrD) or control diet on lipid metabolism were studied in a group of six healthy lean males. Plasma NEFA and β-hydroxybutyrate concentrations, net lipid oxidation (indirect calorimetry) and exogenous lipid oxidation (13CO2 production) were monitored in basal conditions, after lipid loading (olive oil labelled with [13C] triolein) and during a standardised mental stress. Lactate clearance and the metabolic effects of an exogenous lactate infusion were also monitored. The HFrD lowered plasma concentrations of NEFA and (β-hydroxybutyrate as well as lipid oxidation in both basal and after lipid-loading conditions. In addition, the HFrD blunted the increase in plasma NEFA and exogenous lipid oxidation during mental stress. The HFrD also increased basal lactate concentrations by 31.8%, and lactate production by 53.8 %, while lactate clearance remained unchanged. Lactate infusion lowered plasma NEFA with the control diet, and net lipid oxidation with both the HFrD and control diet. These results indicate that a 7 d HFrD markedly inhibits lipolysis and lipid oxidation. The HFrD also increases lactate production, and the ensuing increased lactate utilisation may contribute to suppress lipid oxidation.