296 resultados para reduces sodium uptake
Resumo:
The mechanisms sustaining high blood pressure in conscious one-kidney, one-clip Goldblatt rats were evaluated with the use of SK&F 64139, a phenylethanolamine N-methyltransferase inhibitor capable of crossing the blood-brain barrier and of captopril, an angiotensin converting enzyme inhibitor. The rats were studied 3 weeks after left renal artery clipping and contralateral nephrectomy. During the developmental phase of hypertension, two groups of rats were maintained on a regular salt (RNa) intake, whereas two other groups were given a low salt (LNa) diet. On the day of the experiment, the base-line mean blood pressure measured in the LNa rats (177.4 +/- 5.2 mm Hg, mean +/- S.E., n = 15) was similar to that measured in the RNa rats (178.7 +/- 5.4 mm Hg, n = 16). SK&F 64139 (12.5 mg p.o.) induced a significantly more pronounced (P less than .001) blood pressure decrease in the RNa rats (-25.6 +/- 3.6 mm Hg, n = 8) than in the LNa rats (-4.3 +/- 3.3 mm Hg, n = 7) during a 90-min observation period. On the other hand, captopril (10 mg p.o.) normalized blood pressure in LNa rats (n = 8), but produced only a 13.4 mm Hg blood pressure drop in RNa rats (n = 8). RNa rats treated with SK&F 64139 were found to have decreased phenylethanolamine N-methyltransferase activity by an average 80% in selected brain stem nuclei when compared with nontreated rats. No significant difference in plasma catecholamine levels was found between the RNa and LNa rats. These results suggest that, in this experimental model of hypertension, the sodium ion might increase the model of hypertension, the sodium ion might increase the vasoconstrictor contribution of the sympathetic system via a centrally mediated neurogenic mechanism while at the same time it decreases the renin-dependency of the high blood pressure.
Resumo:
This study investigates the effects of digoxin, an inhibitor of the Na+ pump (Na(+)-K(+)-ATPase), on resting metabolic rate (RMR), respiratory quotient (RQ), and nutrient oxidation rate. Twelve healthy male subjects followed a double-blind protocol design and received either 1 mg/day digoxin or a placebo 2 days before indirect calorimetry measurements. Digoxin induced a 0.22 +/- 0.07 kJ/min or 3.8 +/- 1.5% (mean +/- SE, P = 0.01) decrease in RMR and a 0.40 +/- 0.13 kJ/min (P = 0.01) decrease in fat oxidation rate, whereas carbohydrate and protein oxidation rates did not change significantly. A dose-response relationship between serum digoxin and RQ was observed. These results suggest that digoxin reduces not only RMR but also fat oxidation rate by mechanisms that remain to be elucidated. Because a linkage and an association between genes coding the Na(+)-K(+)-ATPase and the RQ have been previously observed, the present demonstration of an effect of Na(+)-K(+)-ATPase inhibition on fat oxidation rate strengthens the concept that the activity of this enzyme may play a role in body weight regulation.
Resumo:
GLUT9 (SLC2A9) is a newly described urate transporter whose function, characteristics, and localization have just started to be elucidated. Some transport properties of human GLUT9 have been studied in the Xenopus laevis oocyte expression system, but the type of transport (uniport, coupled transport system, stoichiometry ... .) is still largely unknown. We used the same experimental system to characterize in more detail the transport properties of mouse GLUT9, its sensitivity to several uricosuric drugs, and the specificities of two splice variants, mGLUT9a and mGLUT9b. [(14)C]urate uptake measurements show that both splice variants are high-capacity urate transporters and have a K(m) of approximately 650 microM. The well-known uricosuric agents benzbromarone (500 microM) and losartan (1 mM) inhibit GLUT9-mediated urate uptake by 90 and 50%, respectively. Surprisingly, phloretin, a glucose-transporter blocker, inhibits [(14)C]urate uptake by approximately 50% at 1 mM. Electrophysiological measurements suggest that urate transport by mouse GLUT9 is electrogenic and voltage dependent, but independent of the Na(+) and Cl(-) transmembrane gradients. Taken together, our results suggest that GLUT9 works as a urate (anion) uniporter. Finally, we show by RT-PCR performed on RNA from mouse kidney microdissected tubules that GLUT9a is expressed at low levels in proximal tubules, while GLUT9b is specifically expressed in distal convoluted and connecting tubules. Expression of mouse GLUT9 in the kidney differs from that of human GLUT9, which could account for species differences in urate handling.
Resumo:
BACKGROUND & AIMS: Priming of T cells by dendritic cells (DCs) in the intestinal mucosa and associated lymphoid tissues helps maintain mucosal tolerance but also contributes to the development of chronic intestinal inflammation. Chemokines regulate the intestinal immune response and can contribute to pathogenesis of inflammatory bowel diseases. We investigated the role of the chemokine CCL17, which is expressed by conventional DCs in the intestine and is up-regulated during colitis. METHODS: Colitis was induced by administration of dextran sodium sulfate (DSS) to mice or transfer of T cells to lymphopenic mice. Colitis activity was monitored by body weight assessment, histologic scoring, and cytokine profile analysis. The direct effects of CCL17 on DCs and the indirect effects on differentiation of T helper (Th) cells were determined in vitro and ex vivo. RESULTS: Mice that lacked CCL17 (Ccl17(E/E) mice) were protected from induction of severe colitis by DSS or T-cell transfer. Colonic mucosa and mesenteric lymph nodes from Ccl17-deficient mice produced lower levels of proinflammatory cytokines. The population of Foxp3(+) regulatory T cells (Tregs) was expanded in Ccl17(E/E) mice and required for long-term protection from colitis. CCR4 expression by transferred T cells was not required for induction of colitis, but CCR4 expression by the recipients was required. CCL17 promoted Toll-like receptor-induced secretion of interleukin-12 and interleukin-23 by DCs in an autocrine manner, promoted differentiation of Th1 and Th17 cells, and reduced induction of Foxp3(+) Treg cells. CONCLUSIONS: The chemokine CCL17 is required for induction of intestinal inflammation in mice. CCL17 has an autocrine effect on DCs that promotes production of inflammatory cytokines and activation of Th1 and Th17 cells and reduces expansion of Treg cells.
Resumo:
Aim: Ultrasmall superparamagnetic iron oxide nanoparticles (USPIO-NPs) are under development for imaging and drug delivery; however, their interaction with human blood-brain barrier models is not known. Materials & Methods: The uptake, reactive oxygen species production and transport of USPIO-NPs across human brain-derived endothelial cells as models of the blood-brain tumor barrier were evaluated for either uncoated, oleic acid-coated or polyvinylamine-coated USPIO-NPs. Results: Reactive oxygen species production was observed for oleic acid-coated and polyvinylamine-coated USPIO-NPs. The uptake and intracellular localization of the iron oxide core of the USPIO-NPs was confirmed by transmission electron microscopy. However, while the uptake of these USPIO-NPs by cells was observed, they were neither released by nor transported across these cells even in the presence of an external dynamic magnetic field. Conclusion: USPIO-NP-loaded filopodia were observed to invade the polyester membrane, suggesting that they can be transported by migrating angiogenic brain-derived endothelial cells.
Resumo:
STUDY OBJECTIVES: Sodium oxybate (SO) is a GABA(B) agonist used to treat the sleep disorder narcolepsy. SO was shown to increase slow wave sleep (SWS) and EEG delta power (0.75-4.5 Hz), both indexes of NREM sleep (NREMS) intensity and depth, suggesting that SO enhances recuperative function of NREM. We investigated whether SO induces physiological deep sleep. DESIGN: SO was administered before an afternoon nap or before the subsequent experimental night in 13 healthy volunteers. The effects of SO were compared to baclofen (BAC), another GABA(B) receptor agonist, to assess the role of GABA(B) receptors in the SO response. MEASUREMENTS AND RESULTS: As expected, a nap significantly decreased sleep need and intensity the subsequent night. Both drugs reversed this nap effect on the subsequent night by decreasing sleep latency and increasing total sleep time, SWS during the first NREMS episode, and EEG delta and theta (0.75-7.25 Hz) power during NREMS. The SO-induced increase in EEG delta and theta power was, however, not specific to NREMS and was also observed during REM sleep (REMS) and wakefulness. Moreover, the high levels of delta power during a nap following SO administration did not affect delta power the following night. SO and BAC taken before the nap did not improve subsequent psychomotor performance and subjective alertness, or memory consolidation. Finally, SO and BAC strongly promoted the appearance of sleep onset REM periods. CONCLUSIONS: The SO-induced EEG slow waves seem not to be functionally similar to physiological slow waves. Our findings also suggest a role for GABA(B) receptors in REMS generation. CITATION: Vienne J; Lecciso G; Constantinescu I; Schwartz S; Franken P; Heinzer R; Tafti M. Differential effects of sodium oxybate and baclofen on EEG, sleep, neurobehavioral performance, and memory. SLEEP 2012;35(8):1071-1084.
Resumo:
The recently discovered epithelial sodium channel (ENaC)/degenerin (DEG) gene family encodes sodium channels involved in various cell functions in metazoans. Subfamilies found in invertebrates or mammals are functionally distinct. The degenerins in Caenorhabditis elegans participate in mechanotransduction in neuronal cells, FaNaC in snails is a ligand-gated channel activated by neuropeptides, and the Drosophila subfamily is expressed in gonads and neurons. In mammals, ENaC mediates Na+ transport in epithelia and is essential for sodium homeostasis. The ASIC genes encode proton-gated cation channels in both the central and peripheral nervous system that could be involved in pain transduction. This review summarizes the physiological roles of the different channels belonging to this family, their biophysical and pharmacological characteristics, and the emerging knowledge of their molecular structure. Although functionally different, the ENaC/DEG family members share functional domains that are involved in the control of channel activity and in the formation of the pore. The functional heterogeneity among the members of the ENaC/DEG channel family provides a unique opportunity to address the molecular basis of basic channel functions such as activation by ligands, mechanotransduction, ionic selectivity, or block by pharmacological ligands.
Resumo:
Phytic acid (PA) is poorly digested by humans and monogastric animals and negatively affects human/animal nutrition and the environment. Rice mutants with reduced PA content have been developed but are often associated with reduced seed weight and viability, lacking breeding value. In the present study, a new approach was explored to reduce seed PA while attaining competitive yield. The OsMRP5 gene, of which mutations are known to reduce seed PA as well as seed yield and viability, was down-regulated specifically in rice seeds by using an artificial microRNA driven by the rice seed specific promoter Ole18. Seed PA contents were reduced by 35.8-71.9% in brown rice grains of transgenic plants compared to their respective null plants (non-transgenic plants derived from the same event). No consistent significant differences of plant height or number of tillers per plant were observed, but significantly lower seed weights (up to 17.8% reduction) were detected in all transgenic lines compared to null plants, accompanied by reductions of seed germination and seedling emergence. It was observed that the silencing of the OsMRP5 gene increased the inorganic P (Pi) levels (up to 7.5 times) in amounts more than the reduction of PA-P in brown rice. This indicates a reduction in P content in other cellular compounds, such as lipids and nucleic acids, which may affect overall seed development. Put together, the present study demonstrated that seed specific silencing of OsMRP5 could significantly reduce the PA content and increase Pi levels in seeds; however, it also significantly lowers seed weight in rice. Discussions were made regarding future directions towards producing agronomically competitive and nutritionally valuable low PA rice.
Resumo:
BACKGROUND: Artemisinin-based combination therapy (ACT) has been promoted as a means to reduce malaria transmission due to their ability to kill both asexual blood stages of malaria parasites, which sustain infections over long periods and the immature derived sexual stages responsible for infecting mosquitoes and onward transmission. Early studies reported a temporal association between ACT introduction and reduced malaria transmission in a number of ecological settings. However, these reports have come from areas with low to moderate malaria transmission, been confounded by the presence of other interventions or environmental changes that may have reduced malaria transmission, and have not included a comparison group without ACT. This report presents results from the first large-scale observational study to assess the impact of case management with ACT on population-level measures of malaria endemicity in an area with intense transmission where the benefits of effective infection clearance might be compromised by frequent and repeated re-infection. METHODS: A pre-post observational study with a non-randomized comparison group was conducted at two sites in Tanzania. Both sites used sulphadoxine-pyrimethamine (SP) monotherapy as a first-line anti-malarial from mid-2001 through 2002. In 2003, the ACT, artesunate (AS) co-administered with SP (AS + SP), was introduced in all fixed health facilities in the intervention site, including both public and registered non-governmental facilities. Population-level prevalence of Plasmodium falciparum asexual parasitaemia and gametocytaemia were assessed using light microscopy from samples collected during representative household surveys in 2001, 2002, 2004, 2005 and 2006. FINDINGS: Among 37,309 observations included in the analysis, annual asexual parasitaemia prevalence in persons of all ages ranged from 11% to 28% and gametocytaemia prevalence ranged from <1% to 2% between the two sites and across the five survey years. A multivariable logistic regression model was fitted to adjust for age, socioeconomic status, bed net use and rainfall. In the presence of consistently high coverage and efficacy of SP monotherapy and AS + SP in the comparison and intervention areas, the introduction of ACT in the intervention site was associated with a modest reduction in the adjusted asexual parasitaemia prevalence of 5 percentage-points or 23% (p < 0.0001) relative to the comparison site. Gametocytaemia prevalence did not differ significantly (p = 0.30). INTERPRETATION: The introduction of ACT at fixed health facilities only modestly reduced asexual parasitaemia prevalence. ACT is effective for treatment of uncomplicated malaria and should have substantial public health impact on morbidity and mortality, but is unlikely to reduce malaria transmission substantially in much of sub-Saharan Africa where individuals are rapidly re-infected.
Resumo:
Changes in intracellular Na(+) concentration underlie essential neurobiological processes, but few reliable tools exist for their measurement. Here we characterize a new synthetic Na(+)-sensitive fluorescent dye, Asante Natrium Green (ANG), with unique properties. This indicator was excitable in the visible spectrum and by two-photon illumination, suffered little photobleaching and located to the cytosol were it remained for long durations without noticeable unwanted effects on basic cell properties. When used in brain tissue, ANG yielded a bright fluorescent signal during physiological Na(+) responses both in neurons and astrocytes. Synchronous electrophysiological and fluorometric recordings showed that ANG produced accurate Na(+) measurement in situ. This new Na(+) indicator opens innovative ways of probing neuronal circuits.
Resumo:
Résumé : La première partie de ce travail de thèse est consacrée au canal à sodium épithélial (ENaC), l'élément clé du transport transépithélial de Na+ dans le néphron distal, le colon et les voies aériennes. Ce canal est impliqué dans certaines formes génétiques d'hypo- et d'hypertension (PHA I, syndrome de Liddle), mais aussi, indirectement, dans la mucoviscidose. La réabsorption transépithéliale de Na+ est principalement régulée par des hormones (aldostérone, vasopressine), mais aussi directement par le Na+, via deux phénomènes distincts, la « feedback inhibition » et la « self-inhibition » (SI). Ce second phénomène est dépendant de la concentration de Na+ extracellulaire, et montre une cinétique rapide (constante de temps d'environ 3 s). Son rôle physiologique serait d'assurer l'homogénéité de la réabsorption de Na+ et d'empêcher que celle-ci soit excessive lorsque les concentrations de Na+ sont élevées. Différents éléments appuient l'hypothèse de la présence d'un site de détection de la concentration du Na+ extracellulaire sur ENaC, gouvernant la SI. L'objectif de ce premier projet est de démontrer l'existence du site de détection impliqué dans la SI et de déterminer ses propriétés physiologiques et sa localisation. Nous avons montré que les caractéristiques de la SI (en termes de sélectivité et affinité ionique) sont différentes des propriétés de conduction du canal. Ainsi, nos résultats confirment l'hypothèse de l'existence d'un site de détection du Na+ (responsable de la transmission de l'information au mécanisme de contrôle de l'ouverture du canal), différent du site de conduction. Par ailleurs, ce site présente une affinité basse et indépendante du voltage pour le Na+ et le Li+ extracellulaires. Le site semble donc être localisé dans le domaine extracellulaire, plutôt que transmembranaire, de la protéine. L'étape suivante consiste alors à localiser précisément le site sur le canal. Des études précédentes, ainsi que des résultats préliminaires récemment obtenus, mettent en avant le rôle dans la self-inhibition du premiers tiers des boucles extracellulaires des sous-unités α et γ du canal. Le second projet tire son origine des limitations de la méthode classique pour l'étude des canaux ioniques, après expression dans les ovocytes de Xenopus laevis, par la méthode du voltage-clamp à deux électrodes, en particulier les limitations dues à la lenteur des échanges de solutions. En outre, cette méthode souffre de nombreux désavantages (manipulations délicates et peu rapides, grands volumes de solution requis). Plusieurs systèmes améliorés ont été élaborés, mais aucun ne corrige tous les désavantages de la méthode classique Ainsi, l'objectif ici est le développement d'un système, pour l'étude électrophysiologique sur ovocytes, présentant les caractéristiques suivantes : manipulation des cellules facilitée et réduite, volumes de solution de perfusion faibles et vitesse rapide d'échange de la perfusion. Un microsystème intégré sur une puce a été élaboré. Ces capacités de mesure ont été testées en utilisant des ovocytes exprimant ENaC. Des résultats similaires (courbes IV, courbes dose-réponse au benzamil) à ceux obtenus avec le système traditionnel ont été enregistrés avec le microsystème. Le temps d'échange de solution a été estimé à ~20 ms et des temps effectifs de changement ont été déterminés comme étant 8 fois plus court avec le nouveau système comparé au classique. Finalement, la SI a été étudiée et il apparaît que sa cinétique est 3 fois plus rapide que ce qui a été estimé précédemment avec le système traditionnel et son amplitude de 10 à 20 % plus importante. Le nouveau microsystème intégré apparaît donc comme adapté à la mesure électrophysiologique sur ovocytes de Xenopus, et possèdent des caractéristiques appropriées à l'étude de phénomènes à cinétique rapide, mais aussi à des applications de type « high throughput screening ». Summary : The first part of the thesis is related to the Epithelial Sodium Channel (ENaC), which is a key component of the transepithelial Na+ transport in the distal nephron, colon and airways. This channel is involved in hypo- and hypertensive syndrome (PHA I, Liddle syndrome), but also indirectly in cystic fibrosis. The transepithelial reabsorption of Na+ is mainly regulated by hormones (aldosterone, vasopressin), but also directly by Na+ itself, via two distinct phenomena, feedback inhibition and self-inhibition. This latter phenomenon is dependant on the extracellular Na+ concentration and has rapid kinetics (time constant of about 3 s). Its physiological role would be to prevent excessive Na+ reabsorption and ensure this reabsorption is homogenous. Several pieces of evidence enable to propose the hypothesis of an extracellular Na+ sensing site on ENaC, governing self-inhibition. The aim of this first project is to demonstrate the existence of the sensing site involved in self-inhibition and to determine its physiological properties and localization. We show self-inhibition characteristics (ionic selectivity and affinity) are different from the conducting properties of the channel. Our results support thus the hypothesis that the Na+ sensing site (responsible of the transmission of the information about the extracellular Na+ concentration to the channel gating mechanism), is different from the channel conduction site. Furthermore, the site has a low and voltage-insensitive affinity for extracellular Na+ or Li+. This site appears to be located in the extracellular domain rather than in the transmembrane part of the channel protein. The next step is then to precisely localize the site on the channel. Some previous studies and preliminary results we recently obtained highlight the role of the first third of the extracellular loop of the α and γ subunits of the channel in self-inhibition. The second project originates in the limitation of the classical two-electrode voltageclamp system classically used to study ion channels expressed in Xenopus /aevis oocytes, in particular limitations related to the slow solution exchange time. In addition, this technique undergoes several drawbacks (delicate manipulations, time consumption volumes). Several improved systems have been built up, but none corrected all these detriments. The aim of this second study is thus to develop a system for electrophysiological study on oocytes featuring an easy and reduced cell handling, small necessary perfusion volumes and fast fluidic exchange. This last feature establishes the link with the first project, as it should enable to improve the kinetics analysis of self-inhibition. A PDMS chip-based microsystem has been elaborated. Its electrophysiological measurement abilities have been tested using oocytes expressing ENaC. Similar measurements (IV curves of benzamil-sensitive currents, benzamil dose-response curves) have been obtained with this system, compared to the traditional one. The solution exchange time has been estimated at N20 ms and effective exchange times (on inward currents) have been determined as 8 times faster with the novel system compared to the classical one. Finally, self-inhibition has been studied and it appears its kinetics is 3 times faster and its amplitude 10 to 20 % higher than what has been previously estimated with the traditional system. The novel integrated microsystem appears therefore to be convenient for electrophysiological measurement on Xenopus oocytes, and displays features suitable for the study of fast kinetics phenomenon, but also high throughput screening applications. Résumé destiné large public : Le corps humain est composé d'organes, eux-mêmes constitués d'un très grand nombre de cellules. Chaque cellule possède une paroi appelée membrane cellulaire qui sépare l'intérieur de cette cellule (milieu intracellulaire) du liquide (milieu extracellulaire) dans lequel elle baigne. Le maintien de la composition stable de ce milieu extracellulaire est essentiel pour la survie des cellules et donc de l'organisme. Le sodium est un des composants majeurs du milieu extracellulaire, sa quantité dans celui-ci doit être particulièrement contrôlée. Le sodium joue en effet un rôle important : il conditionne le volume de ce liquide extracellulaire, donc, par la même, du sang. Ainsi, une grande quantité de sodium présente dans ce milieu va de paire avec une augmentation du volume sanguin, ce qui conduit l'organisme à souffrir d'hypertension. On se rend donc compte qu'il est très important de contrôler la quantité de sodium présente dans les différents liquides de l'organisme. Les apports de sodium dans l'organisme se font par l'alimentation, mais la quantité de sodium présente dans le liquide extracellulaire est contrôlée de manière très précise par le rein. Au niveau de cet organe, on appelle urine primaire le liquide résultant de la filtration du sang. Elle contient de nombreuses substances, des petites molécules, dont l'organisme a besoin (sodium, glucose...), qui sont ensuite récupérées dans l'organe. A la sortie du rein, l'urine finale ne contient plus que l'excédent de ces substances, ainsi que des déchets à éliminer. La récupération du sodium est plus ou moins importante, en fonction des ajustements à apporter à la quantité présente dans le liquide extracellulaire. Elle a lieu grâce à la présence de protéines, dans les membranes des cellules du rein, capables de le transporter et de le faire transiter de l'urine primaire vers le liquide extracellulaire, qui assurera ensuite sa distribution dans l'ensemble de l'organisme. Parmi ces protéines « transporteurs de sodium », nous nous intéressons à une protéine en particulier, appelée ENaC. Il a été montré qu'elle jouait un rôle important dans cette récupération de sodium, elle est en effet impliquée dans des maladies génétiques conduisant à l'hypo- ou à l'hypertension. De précédents travaux ont montré que lorsque le sodium est présent en faible quantité dans l'urine primaire, cette protéine permet d'en récupérer une très grande partie. A l'inverse, lorsque cette quantité de sodium dans l'urine primaire est importante, sa récupération par le biais d'ENaC est réduite. On parle alors d'autorégulation : la protéine elle-même est capable d'adapter son activité de transport en fonction des conditions. Ce phénomène d'autorégulation constitue a priori un mécanisme préventif visant à éviter une trop grande récupération de sodium, limitant ainsi les risques d'hypertension. La première partie de ce travail de thèse a ainsi consisté à clarifier le mécanisme d'autorégulation de la protéine ENaC. Ce phénomène se caractérise en particulier par sa grande vitesse, ce qui le rend difficile à étudier par les méthodes traditionnelles. Nous avons donc, dans une deuxième partie, développé un nouveau système permettant de mieux décrire et analyser cette « autorégulation » d'ENaC. Ce second projet a été mené en collaboration avec l'équipe de Martin Gijs de l'EPFL.
Resumo:
Human cooperation is often based on reputation gained from previous interactions with third parties. Such reputation can be built on generous or punitive actions, and both, one's own reputation and the reputation of others have been shown to influence decision making in experimental games that control for confounding variables. Here we test how reputation-based cooperation and punishment react to disruption of the cognitive processing in different kinds of helping games with observers. Saying a few superfluous words before each interaction was used to possibly interfere with working memory. In a first set of experiments, where reputation could only be based on generosity, the disruption reduced the frequency of cooperation and lowered mean final payoffs. In a second set of experiments where reputation could only be based on punishment, the disruption increased the frequency of antisocial punishment (i.e. of punishing those who helped) and reduced the frequency of punishing defectors. Our findings suggest that working memory can easily be constraining in reputation-based interactions within experimental games, even if these games are based on a few simple rules with a visual display that provides all the information the subjects need to play the strategies predicted from current theory. Our findings also highlight a weakness of experimental games, namely that they can be very sensitive to environmental variation and that quantitative conclusions about antisocial punishment or other behavioral strategies can easily be misleading.