208 resultados para positional cloning
Resumo:
The phloem performs essential systemic functions in tracheophytes, yet little is known about its molecular genetic specification. Here we show that application of the peptide ligand CLAVATA3/EMBRYO SURROUNDING REGION 45 (CLE45) specifically inhibits specification of protophloem in Arabidopsis roots by locking the sieve element precursor cell in its preceding developmental state. CLE45 treatment, as well as viable transgenic expression of a weak CLE45(G6T) variant, interferes not only with commitment to sieve element fate but also with the formative sieve element precursor cell division that creates protophloem and metaphloem cell files. However, the absence of this division appears to be a secondary effect of discontinuous sieve element files and subsequent systemically reduced auxin signaling in the root meristem. In the absence of the formative sieve element precursor cell division, metaphloem identity is seemingly adopted by the normally procambial cell file instead, pointing to possibly independent positional cues for metaphloem formation. The protophloem formation and differentiation defects in brevis radix (brx) and octopus (ops) mutants are similar to those observed in transgenic seedlings with increased CLE45 activity and can be rescued by loss of function of a putative CLE45 receptor, BARELY ANY MERISTEM 3 (BAM3). Conversely, a dominant gain-of-function ops allele or mild OPS dosage increase suppresses brx defects and confers CLE45 resistance. Thus, our data suggest that delicate quantitative interplay between the opposing activities of BAM3-mediated CLE45 signals and OPS-dependent signals determines cellular commitment to protophloem sieve element fate, with OPS acting as a positive, quantitative master regulator of phloem fate.
Resumo:
Morphogen gradients infer cell fate as a function of cellular position. Experiments in Drosophila embryos have shown that the Bicoid (Bcd) gradient is precise and exhibits some degree of scaling. We present experimental results on the precision of Bcd target genes for embryos with a single, double or quadruple dose of bicoid demonstrating that precision is highest at mid-embryo and position dependent, rather than gene dependent. This confirms that the major contribution to precision is achieved already at the Bcd gradient formation. Modeling this dynamic process, we investigate precision for inter-embryo fluctuations in different parameters affecting gradient formation. Within our modeling framework, the observed precision can only be achieved by a transient Bcd profile. Studying different extensions of our modeling framework reveals that scaling is generally position dependent and decreases toward the posterior pole. Our measurements confirm this trend, indicating almost perfect scaling except for anterior most expression domains, which overcompensate fluctuations in embryo length.
Resumo:
Macrophage migration inhibitory factor (MIF), a proinflammatory cytokine, is considered an attractive therapeutic target in multiple inflammatory and autoimmune disorders. In addition to its known biologic activities, MIF can also function as a tautomerase. Several small molecules have been reported to be effective inhibitors of MIF tautomerase activity in vitro. Herein we employed a robust activity-based assay to identify different classes of novel inhibitors of the catalytic and biological activities of MIF. Several novel chemical classes of inhibitors of the catalytic activity of MIF with IC(50) values in the range of 0.2-15.5 microm were identified and validated. The interaction site and mechanism of action of these inhibitors were defined using structure-activity studies and a battery of biochemical and biophysical methods. MIF inhibitors emerging from these studies could be divided into three categories based on their mechanism of action: 1) molecules that covalently modify the catalytic site at the N-terminal proline residue, Pro(1); 2) a novel class of catalytic site inhibitors; and finally 3) molecules that disrupt the trimeric structure of MIF. Importantly, all inhibitors demonstrated total inhibition of MIF-mediated glucocorticoid overriding and AKT phosphorylation, whereas ebselen, a trimer-disrupting inhibitor, additionally acted as a potent hyperagonist in MIF-mediated chemotactic migration. The identification of biologically active compounds with known toxicity, pharmacokinetic properties, and biological activities in vivo should accelerate the development of clinically relevant MIF inhibitors. Furthermore, the diversity of chemical structures and mechanisms of action of our inhibitors makes them ideal mechanistic probes for elucidating the structure-function relationships of MIF and to further determine the role of the oligomerization state and catalytic activity of MIF in regulating the function(s) of MIF in health and disease.
Resumo:
Many research projects in life sciences require purified biologically active recombinant protein. In addition, different formats of a given protein may be needed at different steps of experimental studies. Thus, the number of protein variants to be expressed and purified in short periods of time can expand very quickly. We have therefore developed a rapid and flexible expression system based on described episomal vector replication to generate semi-stable cell pools that secrete recombinant proteins. We cultured these pools in serum-containing medium to avoid time-consuming adaptation of cells to serum-free conditions, maintain cell viability and reuse the cultures for multiple rounds of protein production. As such, an efficient single step affinity process to purify recombinant proteins from serum-containing medium was optimized. Furthermore, a series of multi-cistronic vectors were designed to enable simultaneous expression of proteins and their biotinylation in vivo as well as fast selection of protein-expressing cell pools. Combining these improved procedures and innovative steps, exemplified with seven cytokines and cytokine receptors, we were able to produce biologically active recombinant endotoxin free protein at the milligram scale in 4-6weeks from molecular cloning to protein purification.
Resumo:
HLA-A2-restricted cytolytic T cells specific for the immunodominant human tumor Ag Melan-A(MART-1) can kill most HLA-matched melanoma cells, through recognition of two naturally occurring antigenic variants, i.e., Melan-A nonamer AAGIGILTV and decamer EAAGIGILTV peptides. Several previous studies have suggested a high degree of TCR cross-reactivity to the two peptides. In this study, we describe for the first time that some T cell clones are exclusively nonamer specific, because they are not labeled by A2/decamer-tetramers and do not recognize the decamer when presented endogenously. Functional assays with peptides gave misleading results, possibly because decamers were cleaved by exopeptidases. Interestingly, nonapeptide-specific T cell clones were rarely Valpha2.1 positive (only 1 of 19 clones), in contrast to the known strong bias for Valpha2.1-positive TCRs found in decamer-specific clones (59 of 69 clones). Molecular modeling revealed that nonapeptide-specific TCRs formed unfavorable interactions with the decapeptide, whereas decapeptide-specific TCRs productively created a hydrogen bond between CDR1alpha and glutamic acid (E) of the decapeptide. Ex vivo analysis of T cells from melanoma metastases demonstrated that both nonamer and decamer-specific T cells were enriched to substantial frequencies in vivo, and representative clones showed efficient tumor cell recognition and killing. We conclude that the two peptides should be regarded as distinct epitopes when analyzing tumor immunity and developing immunotherapy against melanoma.
Resumo:
BACKGROUND: To understand cancer-related modifications to transcriptional programs requires detailed knowledge about the activation of signal-transduction pathways and gene expression programs. To investigate the mechanisms of target gene regulation by human estrogen receptor alpha (hERalpha), we combine extensive location and expression datasets with genomic sequence analysis. In particular, we study the influence of patterns of DNA occupancy by hERalpha on expression phenotypes. RESULTS: We find that strong ChIP-chip sites co-localize with strong hERalpha consensus sites and detect nucleotide bias near hERalpha sites. The localization of ChIP-chip sites relative to annotated genes shows that weak sites are enriched near transcription start sites, while stronger sites show no positional bias. Assessing the relationship between binding configurations and expression phenotypes, we find binding sites downstream of the transcription start site (TSS) to be equally good or better predictors of hERalpha-mediated expression as upstream sites. The study of FOX and SP1 cofactor sites near hERalpha ChIP sites shows that induced genes frequently have FOX or SP1 sites. Finally we integrate these multiple datasets to define a high confidence set of primary hERalpha target genes. CONCLUSION: Our results support the model of long-range interactions of hERalpha with the promoter-bound cofactor SP1 residing at the promoter of hERalpha target genes. FOX motifs co-occur with hERalpha motifs along responsive genes. Importantly we show that the spatial arrangement of sites near the start sites and within the full transcript is important in determining response to estrogen signaling.
Resumo:
The Na(+)-independent alanine-serine-cysteine transporter 1 (Asc-1) is exclusively expressed in neuronal structures throughout the central nervous system (CNS). Asc-1 transports small neutral amino acids with high affinity especially for D-serine and glycine (K(i): 8-12 microM), two endogenous glutamate co-agonists that activate N-methyl-D-aspartate (NMDA) receptors through interacting with the strychnine-insensitive glycine binding-site. By regulating D-serine (and possibly glycine) levels in the synaptic cleft, Asc-1 may play an important role in controlling neuronal excitability. We generated asc-1 gene knockout (asc-1(-/-)) mice to test this hypothesis. Behavioral phenotyping combined with electroencephalogram (EEG) recordings revealed that asc-1(-/-) mice developed tremors, ataxia, and seizures that resulted in early postnatal death. Both tremors and seizures were reduced by the NMDA receptor antagonist MK-801. Extracellular recordings from asc-1(-/-) brain slices indicated that the spontaneous seizure activity did not originate in the hippocampus, although, in this region, a relative increase in evoked synaptic responses was observed under nominal Mg(2+)-free conditions. Taken together with the known neurochemistry and neuronal distribution of the Asc-1 transporter, these results indicate that the mechanism underlying the behavioral hyperexcitability in mutant mice is likely due to overactivation of NMDA receptors, presumably resulting from elevated extracellular D-serine. Our study provides the first evidence to support the notion that Asc-1 transporter plays a critical role in regulating neuronal excitability, and indicate that the transporter is vital for normal CNS function and essential to postnatal survival of mice.
Resumo:
The global activator GacA, a highly conserved response regulator in Gram-negative bacteria, is required for the production of exoenzymes and secondary metabolites in Pseudomonas spp. The gacA gene of Pseudomonas aeruginosa PAO1 was isolated and its role in cell-density-dependent gene expression was characterized. Mutational inactivation of gacA resulted in delayed and reduced formation of the cell-density signal N-butyryl-L-homoserine lactone (BHL), of the cognate transcriptional activator RhIR (VsmR), and of the transcriptional activator LasR, which is known to positively regulate RhIR expression. Amplification of gacA on a multicopy plasmid caused precocious and enhanced production of BHL, RhIR and LasR. In parallel, the gacA gene dosage markedly influenced the BHL/RhIR-dependent formation of the cytotoxic compounds pyocyanin and cyanide and the exoenzyme lipase. However, the concentrations of another known cell-density signal of P. aeruginosa, N-oxododecanoyl-L-homoserine lactone, did not always match BHL concentrations. A model accounting for these observations places GacA function upstream of LasR and RhIR in the complex, cell-density-dependent signal-transduction pathway regulating several exoproducts and virulence factors of P. aeruginosa via BHL.
Resumo:
Potentiation of glucose-induced insulin secretion by intestinal factors has been described for many years. Today, two major peptides with potent insulinotropic action have been recognized: gastric inhibitory peptide and truncated forms of glucagon-like peptide I, GLP-I(7-37) or the related GLP-I(7-36)amide. These hormones have specific beta-cell receptors that are coupled to production of cAMP and activation of cAMP-dependent protein kinase. Elevation in intracellular cAMP levels is required to mediate the glucoincretin effect of these hormones: the potentiation of insulin secretion in the presence of stimulatory concentrations of glucose. In addition, circulating glucoincretins maintain basal levels of cAMP, which are necessary to keep beta-cells in a glucose-competent state. Interactions between glucoincretin signaling and glucose-induced insulin secretion may result from the phosphorylation of key elements of the glucose signaling pathway by cAMP-dependent protein kinase. These include the ATP-dependent K+ channel, the Ca++ channel, or elements of the secretory machinery itself. In NIDDM, the glucoincretin effect is reduced. However, basal or stimulated gastric inhibitory peptide and glucagon-like peptide I levels are normal or even elevated, suggesting that signals induced by these hormones on the beta-cells are probably altered. At pharmacological doses, infusion of glucagon-like peptide I but not gastric inhibitory peptide, can ameliorate postprandial insulin secretory response in NIDDM patients. Agonists of the glucagon-like peptide I receptor have been proposed as new therapeutic agents in NIDDM.
Resumo:
Thyroid hormones are involved in the regulation of growth and metabolism in all vertebrates. Transthyretin is one of the extracellular proteins with high affinity for thyroid hormones which determine the partitioning of these hormones between extracellular compartments and intracellular lipids. During vertebrate evolution, both the tissue pattern of expression and the structure of the gene for transthyretin underwent characteristic changes. The purpose of this study was to characterize the position of Insectivora in the evolution of transthyretin in eutherians, a subclass of Mammalia. Transthyretin was identified by thyroxine binding and Western analysis in the blood of adult shrews, hedgehogs, and moles. Transthyretin is synthesized in the liver and secreted into the bloodstream, similar to the situation for other adult eutherians, birds, and diprotodont marsupials, but different from that for adult fish, amphibians, reptiles, monotremes, and Australian polyprotodont marsupials. For the characterization of the structure of the gene and the processing of mRNA for transthyretin, cDNA libraries were prepared from RNA from hedgehog and shrew livers, and full-length cDNA clones were isolated and sequenced. Sections of genomic DNA in the regions coding for the splice sites between exons 1 and 2 were synthesized by polymerase chain reaction and sequenced. The location of splicing was deduced from comparison of genomic with cDNA nucleotide sequences. Changes in the nucleotide sequence of the transthyretin gene during evolution are most pronounced in the region coding for the N-terminal region of the protein. Both the derived overall amino sequences and the N-terminal regions of the transthyretins in Insectivora were found to be very similar to those in other eutherians but differed from those found in marsupials, birds, reptiles, amphibians, and fish. Also, the pattern of transthyretin precursor mRNA splicing in Insectivora was more similar to that in other eutherians than to that in marsupials, reptiles, and birds. Thus, in contrast to the marsupials, with a different pattern of transthyretin gene expression in the evolutionarily "older" polyprotodonts compared with the evolutionarily "younger" diprotodonts, no separate lineages of transthyretin evolution could be identified in eutherians. We conclude that transthyretin gene expression in the liver of adult eutherians probably appeared before the branching of the lineages leading to modern eutherian species.
Resumo:
When endogenous mouse mammary tumor virus (MMTV) superantigens (SAg) are expressed in the first weeks of life an efficient thymic deletion of T cells expressing MMTV SAg-reactive T cell receptor (TcR) V beta segments is observed. As most inbred mouse strains and wild mice contain integrated MMTV DNA, knowing the precise extent of MMTV influence on T cell development is required in order to study T cell immunobiology in the mouse. In this report, backcross breeding between BALB.D2 (Mtv-6, -7, -8 and -9) and 38CH (Mtv-) mice was carried out to obtain animals either lacking endogenous MMTV or containing a single MMTV locus, i.e. Mtv-6, -7, -8 or -9. The TcR V beta chain (TcR V beta) usage in these mice was analyzed using monoclonal antibodies specific for TcR V beta 2, V beta 3, V beta 4, V beta 5, V beta 6, V beta 7, V beta 8, V beta 11, V beta 12 and V beta 14 segments. Both Mtv-8+ mice and Mtv-9+ mice deleted TcR V beta 5+ and V beta 11+ T cells. Moreover, we also observed the deletion of TcR V beta 12+ cells by Mtv-8 and Mtv-9 products. Mtv-6+ and Mtv-7+ animals deleted TcR V beta 3+ and V beta 5+ cells, and TcR V beta 6+, V beta 7+ and V beta 8.1+ cells, respectively. Unexpectedly, TcR V beta 8.2+ cells were also deleted in some backcross mice expressing Mtv-7. TcR V beta 8.2 reactivity to Mtv-7 was shown to be brought by the 38CH strain and to result from an amino acid substitution (Asn-->Asp) in position 19 on the TcR V beta 8.2 fragment. Reactivities of BALB.D2 TcR V beta 8.2 and 38CH TcR V beta 8.2 to the exogenous infectious viruses, MMTV(SW) and MMTV(SHN), were compared. Finally, the observation of increased frequencies of TcR V beta 2+, V beta 4+ and V beta 8+ CD4+ T cell subsets in Mtv-8+ and Mtv-9+ mice, and TcR V beta 4+ CD4+ T cells in Mtv-6+ and Mtv-7+ mice, when compared with the T cell repertoire of Mtv- mice, is consistent with the possibility that MMTV products contribute to positive selection of T cells.
Resumo:
Purpose: To investigate the molecular involvement of PTEN, a tumor suppressor gene, in a case of cellular pigmented choroidal Schwannoma in a patient with hamartomatous syndrome due to heterozygous PTEN germline mutation. Methods: Histopathological, immunohistochemical, and electron microscopy analyses were performed by standard procedures. Paraffin-embedded samples of normal and tumor eye tissues were collected and DNA was extracted. A 145 bp region flanking the heterozygous c.406T>C mutation in exon 5 of PTEN was amplified by PCR and sequenced. To evaluate the allelic status of PTEN in the tumor sample, we cloned different PCR products in E. coli using a TA cloning procedure. Results: Histopathology demonstrated a posterior choroidal mass measuring 1.3 x 1.6 x 1.4 cm. The tumor was composed by fascicles of spindle cells with wavy cytoplasm. No Verrocay bodies could be identified. Scattered histiocytes with clear cytoplasm were present. By immunohistochemistry, the cells were expressing S100 and focally Melan A proteins. Pericellular type IV collagen could be demonstrated. Interlacing cytoplasmic processes covered by thick basement membrane could be found by electron microscopy as well as few premelanosomes. Moderate PTEN expression by immunohistochemistry was identified in some cells. As expected, the germline mutation could be detected by DNA sequencing in both the paraffin-embedded normal and tumor eye tissues. Analysis of 33 E. coli colonies bearing clones from the tumor eye tissue DNA surprisingly revealed that most of them contained the PTEN wild-type allele (29 vs. 4, Fisher's test p-value = 0.002). Conclusions: This is the first reported case of choroidal cellular Schwannoma arising in the context of a PTEN hamartomatous syndrome. Allelic analysis of PTEN in the tumor suggests a statistically-significant partial loss of heterozygozity in favor of the wild-type allele. Our findings are in clear contrast with what is usually observed in cancer tissues, for which mutated alleles of tumor suppressor genes are usually brought to homozygosity. Similar results were previously reported in human non-Hodgkin's lymphomas, displaying an overexpression of the wild-type form of the tumor suppressor gene p53. We are in the process of investigating additional DNA derived from other fresh and paraffin-embedded tissues from the patient, in order to gain insights on the molecular bases of PTEN involvement in this rare choroidal Schwannoma.
Resumo:
Members of the Sox gene family of transcription factors are defined by the presence of an 80 amino acid homology domain, the High Mobility Group (HMG) box. Here we report the cloning and initial analysis of murine Sox-13 . The 984 amino acids Sox-13 protein contains a single HMG box, a leucine zipper motif and a glutamine-rich stretch. These characteristics are shared with another member of the Sox gene family, Sox-6. High level embryonic expression of Sox-13 occurs uniquely in the arterial walls of 13.5 days post coitum (dpc) mice and later. Low level expression was observed in the inner ear of 13.5 dpc mice and in a limited number of cells in the thymus of 16.5 dpc mice, from which Sox-13 was originally cloned. At 18.5 dpc, Sox-13 is expressed in the tracheal epithelium below the vocal cord and in the hair follicles. The Sox-13 protein binds to the consensus HMG box motif, AACAAAG, but does not transactivate transcription through a concatamer of this motif. Sox-13, like other members of the Sox family likely plays an important role in development.
Resumo:
Efficient immune attack of malignant disease requires the concerted action of both CD8+ CTL and CD4+ Th cells. We used human leukocyte antigen (HLA)-A*0201 (A2.1) transgenic mice, in which the mouse CD8 molecule cannot efficiently interact with the alpha3 domain of A2.1, to generate a high-affinity, CD8-independent T cell receptor (TCR) specific for a commonly expressed, tumor-associated cytotoxic T lymphocyte (CTL) epitope derived from the human p53 tumor suppressor protein. Retroviral expression of this CD8-independent, p53-specific TCR into human T cells imparted the CD8+ T lymphocytes with broad tumor-specific CTL activity and turned CD4+ T cells into potent tumor-reactive, p53A2.1-specific Th cells. Both T cell subsets were cooperative and interacted synergistically with dendritic cell intermediates and tumor targets. The intentional redirection of both CD4+ Th cells and CD8+ CTL by the same high-affinity, CD8-independent, tumor-specific TCR could provide the basis for novel broad-spectrum cancer immunotherapeutics.
Resumo:
Glucagon-like peptide-1 (GLP-1) is a gastrointestinal hormone that potentiates glucose-induced insulin secretion by pancreatic beta cells. The mechanisms of interaction between GLP-1 and glucose signaling pathways are not well understood. Here we studied the coupling of the cloned GLP-1 receptor, expressed in fibroblasts or in COS cells, to intracellular second messengers and compared this signaling with that of the endogenous receptor expressed in insulinoma cell lines. Binding of GLP-1 to the cloned receptor stimulated formation of cAMP with the same dose dependence and similar kinetics, compared with the endogenous receptor of insulinoma cells. Compared with forskolin-induced cAMP accumulation, that induced by GLP-1 proceeded with the same initial kinetics but rapidly reached a plateau, suggesting fast desensitization of the receptor. Coupling to the phospholipase C pathway was assessed by measuring inositol phosphate production and variations in the intracellular calcium concentration. No GLP-1-induced production of inositol phosphates could be measured in the different cell types studied. A rise in the intracellular calcium concentration was nevertheless observed in transfected COS cells but was much smaller than that observed in response to norepinephrine in cells also expressing the alpha 1B-adrenergic receptor. Importantly, no such increase in the intracellular calcium concentration could be observed in transfected fibroblasts or insulinoma cells, which, however, responded well to thrombin or carbachol, respectively. Together, our data show that interaction between GLP-1 and glucose signaling pathways in beta cells may be mediated uniquely by an increase in the intracellular cAMP concentration, with the consequent activation of protein kinase A and phosphorylation of elements of the glucose-sensing apparatus or of the insulin granule exocytic machinery.