188 resultados para niche packing
Resumo:
1. Biogeographical models of species' distributions are essential tools for assessing impacts of changing environmental conditions on natural communities and ecosystems. Practitioners need more reliable predictions to integrate into conservation planning (e.g. reserve design and management). 2. Most models still largely ignore or inappropriately take into account important features of species' distributions, such as spatial autocorrelation, dispersal and migration, biotic and environmental interactions. Whether distributions of natural communities or ecosystems are better modelled by assembling individual species' predictions in a bottom-up approach or modelled as collective entities is another important issue. An international workshop was organized to address these issues. 3. We discuss more specifically six issues in a methodological framework for generalized regression: (i) links with ecological theory; (ii) optimal use of existing data and artificially generated data; (iii) incorporating spatial context; (iv) integrating ecological and environmental interactions; (v) assessing prediction errors and uncertainties; and (vi) predicting distributions of communities or collective properties of biodiversity. 4. Synthesis and applications. Better predictions of the effects of impacts on biological communities and ecosystems can emerge only from more robust species' distribution models and better documentation of the uncertainty associated with these models. An improved understanding of causes of species' distributions, especially at their range limits, as well as of ecological assembly rules and ecosystem functioning, is necessary if further progress is to be made. A better collaborative effort between theoretical and functional ecologists, ecological modellers and statisticians is required to reach these goals.
Resumo:
BACKGROUND: The thiomethyl group of S-adenosylmethionine is often recycled as methionine from methylthioadenosine. The corresponding pathway has been unravelled in Bacillus subtilis. However methylthioadenosine is subjected to alternative degradative pathways depending on the organism. RESULTS: This work uses genome in silico analysis to propose methionine salvage pathways for Klebsiella pneumoniae, Leptospira interrogans, Thermoanaerobacter tengcongensis and Xylella fastidiosa. Experiments performed with mutants of B. subtilis and Pseudomonas aeruginosa substantiate the hypotheses proposed. The enzymes that catalyze the reactions are recruited from a variety of origins. The first, ubiquitous, enzyme of the pathway, MtnA (methylthioribose-1-phosphate isomerase), belongs to a family of proteins related to eukaryotic intiation factor 2B alpha. mtnB codes for a methylthioribulose-1-phosphate dehydratase. Two reactions follow, that of an enolase and that of a phosphatase. While in B. subtilis this is performed by two distinct polypeptides, in the other organisms analyzed here an enolase-phosphatase yields 1,2-dihydroxy-3-keto-5-methylthiopentene. In the presence of dioxygen an aci-reductone dioxygenase yields the immediate precursor of methionine, ketomethylthiobutyrate. Under some conditions this enzyme produces carbon monoxide in B. subtilis, suggesting a route for a new gaseous mediator in bacteria. Ketomethylthiobutyrate is finally transaminated by an aminotransferase that exists usually as a broad specificity enzyme (often able to transaminate aromatic aminoacid keto-acid precursors or histidinol-phosphate). CONCLUSION: A functional methionine salvage pathway was experimentally demonstrated, for the first time, in P. aeruginosa. Apparently, methionine salvage pathways are frequent in Bacteria (and in Eukarya), with recruitment of different polypeptides to perform the needed reactions (an ancestor of a translation initiation factor and RuBisCO, as an enolase, in some Firmicutes). Many are highly dependent on the presence of oxygen, suggesting that the ecological niche may play an important role for the existence and/or metabolic steps of the pathway, even in phylogenetically related bacteria. Further work is needed to uncover the corresponding steps when dioxygen is scarce or absent (this is important to explore the presence of the pathway in Archaea). The thermophile T. tengcongensis, that thrives in the absence of oxygen, appears to possess the pathway. It will be an interesting link to uncover the missing reactions in anaerobic environments.
A New Species of Sand Racer, Psammodromus (Squamata: Lacertidae), from the Western Iberian Peninsula
Resumo:
A new species of lacertid lizard of the genus Psammodromus is described from the Iberian Peninsula. Genetic and recently published phenotypic data support the differentiation of Psammodromus hispanicus into three, and not as previously suggested two, distinct lineages. Age estimates, lineage allopatry, the lack of mitochondrial and nuclear haplotype sharing between lineages, ecological niche divergence, and the current biogeographic distribution, indicated that the three lineages correspond to three independent species. Here, we describe a new species, Psammodromus occidentalis sp. n., which is genetically different from the other sand racers and differentiated by the number of femoral pores, number of throat scales, snout shape, head ratio, green nuptial coloration, and number of supralabial scales below the subocular scale. We also propose to upgrade the two previously recognized subspecies, Psammodromus hispanicus hispanicus Fitzinger, 1826 from central Spain and Psammodromus hispanicus edwardsianus (Dugès, 1829) from eastern Spain, to the species level: Psammodromus hispanicus stat. nov. and Psammodromus edwardsianus stat. nov. Given that the holotype of Psammodromus hispanicus was lost, we designate a neotype. We also analysed museum specimens of P. blanci, P. microdactylus and P. algirus to describe differentiation of the Psammodromus hispanicus lineages/species from their closest relatives.
Resumo:
Most hematopoietic stem cells (HSC) in the bone marrow reside in a quiescent state and occasionally enter the cell cycle upon cytokine-induced activation. Although the mechanisms regulating HSC quiescence and activation remain poorly defined, recent studies have revealed a role of lipid raft clustering (LRC) in HSC activation. Here, we tested the hypothesis that changes in lipid raft distribution could serve as an indicator of the quiescent and activated state of HSCs in response to putative niche signals. A semi-automated image analysis tool was developed to map the presence or absence of lipid raft clusters in live HSCs cultured for just one hour in serum-free medium supplemented with stem cell factor (SCF). By screening the ability of 19 protein candidates to alter lipid raft dynamics, we identified six factors that induced either a marked decrease (Wnt5a, Wnt3a and Osteopontin) or increase (IL3, IL6 and VEGF) in LRC. Cell cycle kinetics of single HSCs exposed to these factors revealed a correlation of LRC dynamics and proliferation kinetics: factors that decreased LRC slowed down cell cycle kinetics, while factors that increased LRC led to faster and more synchronous cycling. The possibility of identifying, by LRC analysis at very early time points, whether a stem cell is activated and possibly committed upon exposure to a signaling cue of interest could open up new avenues for large-scale screening efforts.
Resumo:
OBJECT: In 1999 we reported that 94% of unruptured middle cerebral artery (MCA) aneurysms managed prospectively between 1993 and 1997, according to a protocol favoring endovascular coiling, were best treated by surgical clipping. The goal of the current study was to delineate the most appropriate treatment option for unruptured MCA aneurysms today, considering the technical advances in imaging and in endovascular treatment. METHODS: 35 consecutive patients harboring 40 unruptured MCA aneurysms were treated between 1997 and December 2000. Patients with unruptured cerebral aneurysms are managed prospectively according to the same protocol as reported previously [1]: the primary treatment recommendation is endovascular packing with Guglielmi detachable coils (GDCs). Surgical clipping is recommended after failed attempt at coil placement or in the presence of angioanatomical features that contraindicate that type of endovascular therapy. RESULTS: One unruptured MCA aneurysm was treated by endovascular embolization, 37 unruptured MCA aneurysms were clipped, whereas 2 unruptured MCA aneurysms were trapped with simultaneous extracranial-intracranial revascularization. Postoperative angiography revealed complete exclusion of all aneurysms. Preservation of vascular permeability was demonstrated in all clip-reconstructed aneurysms, despite arterial branches frequently originating from the aneurysmal base. Cerebral revascularization of the distal MCA was successful in the 2 patients with giant aneurysms. None of the patients presented permanent disabling complications from the treatment of the unruptured MCA aneurysm. CONCLUSION: Despite major technical advances in imaging and in endovascular treatment of cerebral aneurysms, surgical clipping still is the most efficient treatment for unruptured MCA aneurysms at the beginning of the new millennium.
Resumo:
1. Niche theory predicts that the stable coexistence of species within a guild should be associated, if resources are limited, with a mechanism of resource partitioning. Using extensive data on diets, the present study attempts: (i) to test the hypothesis that, in sympatry, the interspecific overlap between the trophic niches of the sibling bat species Myotis myotis and M. blythii-which coexist intimately in their roosts-is effectively lower than the two intraspecific overlaps; (ii) to assess the role played by interspecific competition in resource partitioning through the study of trophic niche displacement between several sympatric and allopatric populations. 2. Diets were determined by the analysis of faecal samples collected in the field from individual bats captured in various geographical areas. Trophic niche overlaps were calculated monthly for all possible intraspecific and interspecific pairs of individuals from sympatric populations. Niche breadth was estimated from: (i) every faecal sample; (ii) all the faecal samples collected per month in a given population (geographical area). 3. In every population, the bulk of the diets of M. myotis and M. blythii consisted of, respectively, terrestrial (e.g. carabid beetles) and grass-dwelling (mostly bush crickets) prey. All intraspecific trophic niche overlaps were significantly greater than the interspecific one, except in Switzerland in May when both species exploited mass concentrations of cockchafers, a non-limiting food source. This clearcut partitioning of resources may allow the stable, intimate coexistence observed under sympatric conditions. 4. Relative proportions of ground-and grass-dwelling prey, as well as niche breadths (either individual or population), did not differ significantly between sympatry and allopatry, showing that, under allopatric conditions, niche expansion does not take place. This suggests that active interspecific competition is not the underlying mechanism responsible for the niche partitioning which is currently observed between M. myotis and M. blythii.
Resumo:
Aim It is hypothesized that the ecological niches of polyploids should be both distinct and broader than those of diploids - characteristics that might have allowed the successful colonization of open habitats by polyploids during the Pleistocene glacial cycles. Here, we test these hypotheses by quantifying and comparing the ecological niches and niche breadths of a group of European primroses. Location Europe. Methods We gathered georeferenced data of four related species in Primula sect. Aleuritia at different ploidy levels (diploid, tetraploid, hexaploid and octoploid) and used seven bioclimatic variables to quantify niche overlap between species by applying a series of univariate and multivariate analyses combined with modelling techniques. We also employed permutation-based tests to evaluate niche similarity between the four species. Niche breadth for each species was evaluated both in the multivariate environmental space and in geographical space. Results The four species differed significantly from each other in mono-dimensional comparisons of climatological variables and occupied distinct habitats in the multi-dimensional environmental space. The majority of the permutation-based tests either indicated that the four species differed significantly in their habitat preferences and ecological niches or did not support significant niche similarity. Furthermore, our results revealed narrower niche breadths and geographical ranges in species of P. sect. Aleuritia at higher ploidy levels. Main conclusions The detected ecological differentiation between the four species of P. sect. Aleuritia at different ploidy levels is consistent with the hypothesis that polyploids occupy distinct ecological niches that differ from those of their diploid relative. Contrary to expectations, we find that polyploid species of P. sect. Aleuritia occupy narrower environmental and geographical spaces than their diploid relative. These results on the ecological niches of closely related polyploid and diploid species highlight factors that potentially contribute to the evolution and distribution of polyploid species.
Resumo:
La biologie de la conservation est communément associée à la protection de petites populations menacées d?extinction. Pourtant, il peut également être nécessaire de soumettre à gestion des populations surabondantes ou susceptibles d?une trop grande expansion, dans le but de prévenir les effets néfastes de la surpopulation. Du fait des différences tant quantitatives que qualitatives entre protection des petites populations et contrôle des grandes, il est nécessaire de disposer de modèles et de méthodes distinctes. L?objectif de ce travail a été de développer des modèles prédictifs de la dynamique des grandes populations, ainsi que des logiciels permettant de calculer les paramètres de ces modèles et de tester des scénarios de gestion. Le cas du Bouquetin des Alpes (Capra ibex ibex) - en forte expansion en Suisse depuis sa réintroduction au début du XXème siècle - servit d?exemple. Cette tâche fut accomplie en trois étapes : En premier lieu, un modèle de dynamique locale, spécifique au Bouquetin, fut développé : le modèle sous-jacent - structuré en classes d?âge et de sexe - est basé sur une matrice de Leslie à laquelle ont été ajoutées la densité-dépendance, la stochasticité environnementale et la chasse de régulation. Ce modèle fut implémenté dans un logiciel d?aide à la gestion - nommé SIM-Ibex - permettant la maintenance de données de recensements, l?estimation automatisée des paramètres, ainsi que l?ajustement et la simulation de stratégies de régulation. Mais la dynamique d?une population est influencée non seulement par des facteurs démographiques, mais aussi par la dispersion et la colonisation de nouveaux espaces. Il est donc nécessaire de pouvoir modéliser tant la qualité de l?habitat que les obstacles à la dispersion. Une collection de logiciels - nommée Biomapper - fut donc développée. Son module central est basé sur l?Analyse Factorielle de la Niche Ecologique (ENFA) dont le principe est de calculer des facteurs de marginalité et de spécialisation de la niche écologique à partir de prédicteurs environnementaux et de données d?observation de l?espèce. Tous les modules de Biomapper sont liés aux Systèmes d?Information Géographiques (SIG) ; ils couvrent toutes les opérations d?importation des données, préparation des prédicteurs, ENFA et calcul de la carte de qualité d?habitat, validation et traitement des résultats ; un module permet également de cartographier les barrières et les corridors de dispersion. Le domaine d?application de l?ENFA fut exploré par le biais d?une distribution d?espèce virtuelle. La comparaison à une méthode couramment utilisée pour construire des cartes de qualité d?habitat, le Modèle Linéaire Généralisé (GLM), montra qu?elle était particulièrement adaptée pour les espèces cryptiques ou en cours d?expansion. Les informations sur la démographie et le paysage furent finalement fusionnées en un modèle global. Une approche basée sur un automate cellulaire fut choisie, tant pour satisfaire aux contraintes du réalisme de la modélisation du paysage qu?à celles imposées par les grandes populations : la zone d?étude est modélisée par un pavage de cellules hexagonales, chacune caractérisée par des propriétés - une capacité de soutien et six taux d?imperméabilité quantifiant les échanges entre cellules adjacentes - et une variable, la densité de la population. Cette dernière varie en fonction de la reproduction et de la survie locale, ainsi que de la dispersion, sous l?influence de la densité-dépendance et de la stochasticité. Un logiciel - nommé HexaSpace - fut développé pour accomplir deux fonctions : 1° Calibrer l?automate sur la base de modèles de dynamique (par ex. calculés par SIM-Ibex) et d?une carte de qualité d?habitat (par ex. calculée par Biomapper). 2° Faire tourner des simulations. Il permet d?étudier l?expansion d?une espèce envahisseuse dans un paysage complexe composé de zones de qualité diverses et comportant des obstacles à la dispersion. Ce modèle fut appliqué à l?histoire de la réintroduction du Bouquetin dans les Alpes bernoises (Suisse). SIM-Ibex est actuellement utilisé par les gestionnaires de la faune et par les inspecteurs du gouvernement pour préparer et contrôler les plans de tir. Biomapper a été appliqué à plusieurs espèces (tant végétales qu?animales) à travers le Monde. De même, même si HexaSpace fut initialement conçu pour des espèces animales terrestres, il pourrait aisément être étndu à la propagation de plantes ou à la dispersion d?animaux volants. Ces logiciels étant conçus pour, à partir de données brutes, construire un modèle réaliste complexe, et du fait qu?ils sont dotés d?une interface d?utilisation intuitive, ils sont susceptibles de nombreuses applications en biologie de la conservation. En outre, ces approches peuvent également s?appliquer à des questions théoriques dans les domaines de l?écologie des populations et du paysage.<br/><br/>Conservation biology is commonly associated to small and endangered population protection. Nevertheless, large or potentially large populations may also need human management to prevent negative effects of overpopulation. As there are both qualitative and quantitative differences between small population protection and large population controlling, distinct methods and models are needed. The aim of this work was to develop theoretical models to predict large population dynamics, as well as computer tools to assess the parameters of these models and to test management scenarios. The alpine Ibex (Capra ibex ibex) - which experienced a spectacular increase since its reintroduction in Switzerland at the beginning of the 20th century - was used as paradigm species. This task was achieved in three steps: A local population dynamics model was first developed specifically for Ibex: the underlying age- and sex-structured model is based on a Leslie matrix approach with addition of density-dependence, environmental stochasticity and culling. This model was implemented into a management-support software - named SIM-Ibex - allowing census data maintenance, parameter automated assessment and culling strategies tuning and simulating. However population dynamics is driven not only by demographic factors, but also by dispersal and colonisation of new areas. Habitat suitability and obstacles modelling had therefore to be addressed. Thus, a software package - named Biomapper - was developed. Its central module is based on the Ecological Niche Factor Analysis (ENFA) whose principle is to compute niche marginality and specialisation factors from a set of environmental predictors and species presence data. All Biomapper modules are linked to Geographic Information Systems (GIS); they cover all operations of data importation, predictor preparation, ENFA and habitat suitability map computation, results validation and further processing; a module also allows mapping of dispersal barriers and corridors. ENFA application domain was then explored by means of a simulated species distribution. It was compared to a common habitat suitability assessing method, the Generalised Linear Model (GLM), and was proven better suited for spreading or cryptic species. Demography and landscape informations were finally merged into a global model. To cope with landscape realism and technical constraints of large population modelling, a cellular automaton approach was chosen: the study area is modelled by a lattice of hexagonal cells, each one characterised by a few fixed properties - a carrying capacity and six impermeability rates quantifying exchanges between adjacent cells - and one variable, population density. The later varies according to local reproduction/survival and dispersal dynamics, modified by density-dependence and stochasticity. A software - named HexaSpace - was developed, which achieves two functions: 1° Calibrating the automaton on the base of local population dynamics models (e.g., computed by SIM-Ibex) and a habitat suitability map (e.g. computed by Biomapper). 2° Running simulations. It allows studying the spreading of an invading species across a complex landscape made of variously suitable areas and dispersal barriers. This model was applied to the history of Ibex reintroduction in Bernese Alps (Switzerland). SIM-Ibex is now used by governmental wildlife managers to prepare and verify culling plans. Biomapper has been applied to several species (both plants and animals) all around the World. In the same way, whilst HexaSpace was originally designed for terrestrial animal species, it could be easily extended to model plant propagation or flying animals dispersal. As these softwares were designed to proceed from low-level data to build a complex realistic model and as they benefit from an intuitive user-interface, they may have many conservation applications. Moreover, theoretical questions in the fields of population and landscape ecology might also be addressed by these approaches.
Resumo:
Although the number of invasive bryophytes is much lower than that of higher plants, they threaten habitats that are often species rich and of high conservation relevance. Their potential of spread has, however, never been determined. Here, we assess whether the three most invasive bryophyte species shifted their niche during the invasion process and whether the extent of the study area defined to calibrate the model (geographic background, GB) affects model transferability. We then determine whether ecological niche models (ENMs) developed in their native range can be projected in other areas to assess their invasive potential. The macroclimatic niches of Campylopus introflexus, Orthodontium lineare and Lophocolea semiteres were compared in their native range (Southern Hemisphere) and in their invasion range (Northern Hemisphere) using ordination techniques. ENMs from an ensemble model were calibrated in the native range and projected onto the Northern Hemisphere using different GBs. No evidence for niche expansion in the invaded range was found and the species occur in the invaded range under climate conditions that are similar to those in the native range. The performance of the models to predict occurrences in the invaded range increased with the extent of the GB. The potential range of all species included entire regions on continents where they are still absent. The expansion of the investigated species appears to be constrained by climate conditions that are similar to those currently prevailing in their native range, which is consistent with our failure to demonstrate macroclimatic niche shift in the invaded range. The use of large GBs is recommended in such vagile organisms with large, disjunct distributions. The models indicated that invasive bryophyte species might become a threat in central and eastern Europe, North America and eastern Asia if accidentally introduced or naturally dispersed.
Resumo:
Electrical resistivity tomography (ERT) is a well-established method for geophysical characterization and has shown potential for monitoring geologic CO2 sequestration, due to its sensitivity to electrical resistivity contrasts generated by liquid/gas saturation variability. In contrast to deterministic inversion approaches, probabilistic inversion provides the full posterior probability density function of the saturation field and accounts for the uncertainties inherent in the petrophysical parameters relating the resistivity to saturation. In this study, the data are from benchtop ERT experiments conducted during gas injection into a quasi-2D brine-saturated sand chamber with a packing that mimics a simple anticlinal geological reservoir. The saturation fields are estimated by Markov chain Monte Carlo inversion of the measured data and compared to independent saturation measurements from light transmission through the chamber. Different model parameterizations are evaluated in terms of the recovered saturation and petrophysical parameter values. The saturation field is parameterized (1) in Cartesian coordinates, (2) by means of its discrete cosine transform coefficients, and (3) by fixed saturation values in structural elements whose shape and location is assumed known or represented by an arbitrary Gaussian Bell structure. Results show that the estimated saturation fields are in overall agreement with saturations measured by light transmission, but differ strongly in terms of parameter estimates, parameter uncertainties and computational intensity. Discretization in the frequency domain (as in the discrete cosine transform parameterization) provides more accurate models at a lower computational cost compared to spatially discretized (Cartesian) models. A priori knowledge about the expected geologic structures allows for non-discretized model descriptions with markedly reduced degrees of freedom. Constraining the solutions to the known injected gas volume improved estimates of saturation and parameter values of the petrophysical relationship. (C) 2014 Elsevier B.V. All rights reserved.
Resumo:
This paper deals with a phenomenologically motivated magneto-viscoelastic coupled finite strain framework for simulating the curing process of polymers under the application of a coupled magneto-mechanical road. Magneto-sensitive polymers are prepared by mixing micron-sized ferromagnetic particles in uncured polymers. Application of a magnetic field during the curing process causes the particles to align and form chain-like structures lending an overall anisotropy to the material. The polymer curing is a viscoelastic complex process where a transformation from fluid. to solid occurs in the course of time. During curing, volume shrinkage also occurs due to the packing of polymer chains by chemical reactions. Such reactions impart a continuous change of magneto-mechanical properties that can be modelled by an appropriate constitutive relation where the temporal evolution of material parameters is considered. To model the shrinkage during curing, a magnetic-induction-dependent approach is proposed which is based on a multiplicative decomposition of the deformation gradient into a mechanical and a magnetic-induction-dependent volume shrinkage part. The proposed model obeys the relevant laws of thermodynamics. Numerical examples, based on a generalised Mooney-Rivlin energy function, are presented to demonstrate the model capacity in the case of a magneto-viscoelastically coupled load.
Resumo:
UNLABELLED: Honeybees harbor well-defined bacterial communities in their guts. The major members of these communities appear to benefit the host, but little is known about how they interact with the host and specifically how they interface with the host immune system. In the pylorus, a short region between the midgut and hindgut, honeybees frequently exhibit scab-like structures on the epithelial gut surface. These structures are reminiscent of a melanization response of the insect immune system. Despite the wide distribution of this phenotype in honeybee populations, its cause has remained elusive. Here, we show that the presence of a common member of the bee gut microbiota, the gammaproteobacterium Frischella perrara, correlates with the appearance of the scab phenotype. Bacterial colonization precedes scab formation, and F. perrara specifically localizes to the melanized regions of the host epithelium. Under controlled laboratory conditions, we demonstrate that exposure of microbiota-free bees to F. perrara but not to other bacteria results in scab formation. This shows that F. perrara can become established in a spatially restricted niche in the gut and triggers a morphological change of the epithelial surface, potentially due to a host immune response. As an intermittent colonizer, this bacterium holds promise for addressing questions of community invasion in a simple yet relevant model system. Moreover, our results show that gut symbionts of bees engage in differential host interactions that are likely to affect gut homeostasis. Future studies should focus on how these different gut bacteria impact honeybee health. IMPORTANCE: As pollinators, honeybees are key species for agricultural and natural ecosystems. Their guts harbor simple communities composed of characteristic bacterial species. Because of these features, bees are ideal systems for studying fundamental aspects of gut microbiota-host interactions. However, little is known about how these bacteria interact with their host. Here, we show that a common member of the bee gut microbiota causes the formation of a scab-like structure on the gut epithelium of its host. This phenotype was first described in 1946, but since then it has not been much further characterized, despite being found in bee populations worldwide. The scab phenotype is reminiscent of melanization, a conserved innate immune response of insects. Our results show that high abundance of one member of the bee gut microbiota triggers this specific phenotype, suggesting that the gut microbiota composition can affect the immune status of this key pollinator species.
Resumo:
BACKGROUND: The historical orogenesis and associated climatic changes of mountain areas have been suggested to partly account for the occurrence of high levels of biodiversity and endemism. However, their effects on dispersal, differentiation and evolution of many groups of plants are still unknown. In this study, we examined the detailed diversification history of Primula sect. Armerina, and used biogeographic analysis and macro-evolutionary modeling to investigate a series of different questions concerning the evolution of the geographical and ecological distribution of the species in this section. RESULTS: We sequenced five chloroplast and one nuclear genes for species of Primula sect. Armerina. Neither chloroplast nor nuclear trees support the monophyly of the section. The major incongruences between the two trees occur among closely related species and may be explained by hybridization. Our dating analyses based on the chloroplast dataset suggest that this section began to diverge from its relatives around 3.55 million years ago, largely coinciding with the last major uplift of the Qinghai-Tibet Plateau (QTP). Biogeographic analysis supports the origin of the section in the Himalayan Mountains and dispersal from the Himalayas to Northeastern QTP, Western QTP and Hengduan Mountains. Furthermore, evolutionary models of ecological niches show that the two P. fasciculata clades have significantly different climatic niche optima and rates of niche evolution, indicating niche evolution under climatic changes and further providing evidence for explaining their biogeographic patterns. CONCLUSION: Our results support the hypothesis that geologic and climatic events play important roles in driving biological diversification of organisms in the QTP area. The Pliocene uplift of the QTP and following climatic changes most likely promoted both the inter- and intraspecific divergence of Primula sect. Armerina. This study also illustrates how niche evolution under climatic changes influences biogeographic patterns.
Resumo:
BACKGROUND: Root-colonizing fluorescent pseudomonads are known for their excellent abilities to protect plants against soil-borne fungal pathogens. Some of these bacteria produce an insecticidal toxin (Fit) suggesting that they may exploit insect hosts as a secondary niche. However, the ecological relevance of insect toxicity and the mechanisms driving the evolution of toxin production remain puzzling. RESULTS: Screening a large collection of plant-associated pseudomonads for insecticidal activity and presence of the Fit toxin revealed that Fit is highly indicative of insecticidal activity and predicts that Pseudomonas protegens and P. chlororaphis are exclusive Fit producers. A comparative evolutionary analysis of Fit toxin-producing Pseudomonas including the insect-pathogenic bacteria Photorhabdus and Xenorhadus, which produce the Fit related Mcf toxin, showed that fit genes are part of a dynamic genomic region with substantial presence/absence polymorphism and local variation in GC base composition. The patchy distribution and phylogenetic incongruence of fit genes indicate that the Fit cluster evolved via horizontal transfer, followed by functional integration of vertically transmitted genes, generating a unique Pseudomonas-specific insect toxin cluster. CONCLUSIONS: Our findings suggest that multiple independent evolutionary events led to formation of at least three versions of the Mcf/Fit toxin highlighting the dynamic nature of insect toxin evolution.
Resumo:
Nowadays, Species Distribution Models (SDMs) are a widely used tool. Using different statistical approaches these models reconstruct the realized niche of a species using presence data and a set of variables, often topoclimatic. There utilization range is quite large from understanding single species requirements, to the creation of nature reserve based on species hotspots, or modeling of climate change impact, etc... Most of the time these models are using variables at a resolution of 50km x 50km or 1 km x 1 km. However in some cases these models are used with resolutions below the kilometer scale and thus called high resolution models (100 m x 100 m or 25 m x 25 m). Quite recently a new kind of data has emerged enabling precision up to lm x lm and thus allowing very high resolution modeling. However these new variables are very costly and need an important amount of time to be processed. This is especially the case when these variables are used in complex calculation like models projections over large areas. Moreover the importance of very high resolution data in SDMs has not been assessed yet and is not well understood. Some basic knowledge on what drive species presence-absences is still missing. Indeed, it is not clear whether in mountain areas like the Alps coarse topoclimatic gradients are driving species distributions or if fine scale temperature or topography are more important or if their importance can be neglected when balance to competition or stochasticity. In this thesis I investigated the importance of very high resolution data (2-5m) in species distribution models using either very high resolution topographic, climatic or edaphic variables over a 2000m elevation gradient in the Western Swiss Alps. I also investigated more local responses of these variables for a subset of species living in this area at two precise elvation belts. During this thesis I showed that high resolution data necessitates very good datasets (species and variables for the models) to produce satisfactory results. Indeed, in mountain areas, temperature is the most important factor driving species distribution and needs to be modeled at very fine resolution instead of being interpolated over large surface to produce satisfactory results. Despite the instinctive idea that topographic should be very important at high resolution, results are mitigated. However looking at the importance of variables over a large gradient buffers the importance of the variables. Indeed topographic factors have been shown to be highly important at the subalpine level but their importance decrease at lower elevations. Wether at the mountane level edaphic and land use factors are more important high resolution topographic data is more imporatant at the subalpine level. Finally the biggest improvement in the models happens when edaphic variables are added. Indeed, adding soil variables is of high importance and variables like pH are overpassing the usual topographic variables in SDMs in term of importance in the models. To conclude high resolution is very important in modeling but necessitate very good datasets. Only increasing the resolution of the usual topoclimatic predictors is not sufficient and the use of edaphic predictors has been highlighted as fundamental to produce significantly better models. This is of primary importance, especially if these models are used to reconstruct communities or as basis for biodiversity assessments. -- Ces dernières années, l'utilisation des modèles de distribution d'espèces (SDMs) a continuellement augmenté. Ces modèles utilisent différents outils statistiques afin de reconstruire la niche réalisée d'une espèce à l'aide de variables, notamment climatiques ou topographiques, et de données de présence récoltées sur le terrain. Leur utilisation couvre de nombreux domaines allant de l'étude de l'écologie d'une espèce à la reconstruction de communautés ou à l'impact du réchauffement climatique. La plupart du temps, ces modèles utilisent des occur-rences issues des bases de données mondiales à une résolution plutôt large (1 km ou même 50 km). Certaines bases de données permettent cependant de travailler à haute résolution, par conséquent de descendre en dessous de l'échelle du kilomètre et de travailler avec des résolutions de 100 m x 100 m ou de 25 m x 25 m. Récemment, une nouvelle génération de données à très haute résolution est apparue et permet de travailler à l'échelle du mètre. Les variables qui peuvent être générées sur la base de ces nouvelles données sont cependant très coûteuses et nécessitent un temps conséquent quant à leur traitement. En effet, tout calcul statistique complexe, comme des projections de distribution d'espèces sur de larges surfaces, demande des calculateurs puissants et beaucoup de temps. De plus, les facteurs régissant la distribution des espèces à fine échelle sont encore mal connus et l'importance de variables à haute résolution comme la microtopographie ou la température dans les modèles n'est pas certaine. D'autres facteurs comme la compétition ou la stochasticité naturelle pourraient avoir une influence toute aussi forte. C'est dans ce contexte que se situe mon travail de thèse. J'ai cherché à comprendre l'importance de la haute résolution dans les modèles de distribution d'espèces, que ce soit pour la température, la microtopographie ou les variables édaphiques le long d'un important gradient d'altitude dans les Préalpes vaudoises. J'ai également cherché à comprendre l'impact local de certaines variables potentiellement négligées en raison d'effets confondants le long du gradient altitudinal. Durant cette thèse, j'ai pu monter que les variables à haute résolution, qu'elles soient liées à la température ou à la microtopographie, ne permettent qu'une amélioration substantielle des modèles. Afin de distinguer une amélioration conséquente, il est nécessaire de travailler avec des jeux de données plus importants, tant au niveau des espèces que des variables utilisées. Par exemple, les couches climatiques habituellement interpolées doivent être remplacées par des couches de température modélisées à haute résolution sur la base de données de terrain. Le fait de travailler le long d'un gradient de température de 2000m rend naturellement la température très importante au niveau des modèles. L'importance de la microtopographie est négligeable par rapport à la topographie à une résolution de 25m. Cependant, lorsque l'on regarde à une échelle plus locale, la haute résolution est une variable extrêmement importante dans le milieu subalpin. À l'étage montagnard par contre, les variables liées aux sols et à l'utilisation du sol sont très importantes. Finalement, les modèles de distribution d'espèces ont été particulièrement améliorés par l'addition de variables édaphiques, principalement le pH, dont l'importance supplante ou égale les variables topographique lors de leur ajout aux modèles de distribution d'espèces habituels.