297 resultados para in vivo sun protector factor
Resumo:
Similar to human chronic lymphocytic leukemia (CLL), the de novo New Zealand Black (NZB) mouse model has a genetically determined age-associated increase in malignant B-1 clones and decreased expression of microRNAs miR-15a and miR-16 in B-1 cells. In the present study, lentiviral vectors were employed in vivo to restore miR-15a/16, and both the short-term single injection and long-term multiple injection effects of this delivery were observed in NZB. Control lentivirus without the mir-15a/16 sequence was used for comparison. We found that in vivo lentiviral delivery of mir-15a/16 increased miR-15a/16 expression in cells that were transduced (detected by GFP expression) and in sera when compared with control lentivirus treatment. More importantly, mice treated with the miR-expressing lentivirus had decreased disease. The lentivirus had little systemic toxicity while preferentially targeting B-1 cells. Short-term effects on B-1 cells were direct effects, and only malignant B-1 cells transduced with miR-15a/16 lentivirus had decreased viability. In contrast, long-term studies suggested both direct and indirect effects resulting from miR-15a/16 lentivirus treatment. A decrease in B-1 cells was found in both the transduced and non-transduced populations. Our data support the potential use of systemic lentiviral delivery of miR-15a/16 to ameliorate disease manifestations of CLL.
Resumo:
Aim: Gamma Knife surgery (GKS) is a non-invasive neurosurgical stereotactic procedure, increasingly used as an alternative to open functional procedures. This includes the targeting of the ventro-intermediate (Vim) nucleus of the thalamus for tremor. We currently perform an indirect targeting, using the "quadrilatere of Guyot," as the Vim nucleus is not visible on current 3 Tesla (T) MRI acquisitions. The primary objective of the current study was to enhance anatomic imaging for Vim GKS using high-field (7 T) MRI, with the aim of refining the visualization and precision of anatomical targeting. Method: Five young healthy subjects (mean age 23 years) were scanned both on 3 and 7 T MRI in Lausanne University Hospital (CHUV) and Center for Biomedical Imaging (CIBM). Classical T1-weighted MPRAGE, T2 CISS sequences (replacing former ventriculography) and diffusion tensor imaging were acquired at 3T. We obtained high-resolution susceptibility weighted images (SWI) at 7T for the visualization of thalamic subparts. SWI was further integrated for the first time into Leksell Gamma Plan® (LGP) software and co-registered with the 3T images. A simulation of targeting of the Vim was done using the "quadrilatere of Guyot" methodology on the 3T images. Furthermore, a correlation with the position of the found target on SWI was performed. The atlas of Morel et al. was used to confirm the findings on a detailed computer analysis outside LGP. Also, 3T and 7T MRI of one patient undergoing GKS Vim thalamotomy, were obtained before and 2 years after the procedure, and studied similarly. Results: The use of SWI provided a superior resolution and improved image contrast within the central gray matter. This allowed visualization and direct delineation of groups of thalamic nuclei in vivo, including the Vim. The position of the target, as assessed with the "quadrilatere of Guyot" method on 3 T, perfectly matched with the supposed one of the Vim on the SWI. Furthermore, a 3-dimensional model of the Vim target area was created on the basis of 3T and 7T images. Conclusion: This is the first report of the integration of SWI high-field MRI into the LGP in healthy subjects and in one patient treated GKS Vim thalamotomy. This approach aims at the improvement of targeting validation and further direct targeting of the Vim in tremor. The anatomical correlation between the direct visualization on 7T and the current targeting methods on 3T seems to show a very good anatomical matching.
Resumo:
Evidence from magnetic resonance imaging (MRI) studies shows that healthy aging is associated with profound changes in cortical and subcortical brain structures. The reliable delineation of cortex and basal ganglia using automated computational anatomy methods based on T1-weighted images remains challenging, which results in controversies in the literature. In this study we use quantitative MRI (qMRI) to gain an insight into the microstructural mechanisms underlying tissue ageing and look for potential interactions between ageing and brain tissue properties to assess their impact on automated tissue classification. To this end we acquired maps of longitudinal relaxation rate R1, effective transverse relaxation rate R2* and magnetization transfer - MT, from healthy subjects (n=96, aged 21-88 years) using a well-established multi-parameter mapping qMRI protocol. Within the framework of voxel-based quantification we find higher grey matter volume in basal ganglia, cerebellar dentate and prefrontal cortex when tissue classification is based on MT maps compared with T1 maps. These discrepancies between grey matter volume estimates can be attributed to R2* - a surrogate marker of iron concentration, and further modulation by an interaction between R2* and age, both in cortical and subcortical areas. We interpret our findings as direct evidence for the impact of ageing-related brain tissue property changes on automated tissue classification of brain structures using SPM12. Computational anatomy studies of ageing and neurodegeneration should acknowledge these effects, particularly when inferring about underlying pathophysiology from regional cortex and basal ganglia volume changes.
Resumo:
Glycopeptide resistance, in a set of in vitro step-selected teicoplanin-resistant mutants derived from susceptible Staphylococcus aureus SA113, was associated with slower growth, thickening of the bacterial cell wall, increased N-acetylglucosamine incorporation, and decreased hemolysis. Differential transcriptome analysis showed that as resistance increased, some virulence-associated genes became downregulated. In a mouse tissue cage infection model, an inoculum of 10(4) CFU of strain SA113 rapidly produced a high-bacterial-load infection, which triggered MIP-2 release, leukocyte infiltration, and reduced leukocyte viability. In contrast, with the same inoculum of the isogenic glycopeptide-resistant derivative NM67, CFU initially decreased, resulting in the elimination of the mutant in three out of seven cages. In the four cages in which NM67 survived, it partially regained wild-type characteristics, including thinning of the cell wall, reduced N-acetylglucosamine uptake, and increased hemolysis; however, the survivors also became teicoplanin hypersusceptible. The elimination of the teicoplanin-resistant mutants and selection of teicoplanin-hypersusceptible survivors in the tissue cages indicated that glycopeptide resistance imposes a fitness burden on S. aureus and is selected against in vivo, with restoration of fitness incurring the price of resistance loss.
Resumo:
Resting skeletal muscle has a preference for the oxidation of lipids compared to carbohydrates and a shift towards carbohydrate oxidation is observed with increasing exercise. Lactate is not only an end product in skeletal muscle but also an important metabolic intermediate for mitochondrial oxidation. Recent advances in hyperpolarized MRS allow the measurement of substrate metabolism in vivo in real time. The aim of this study was to investigate the use of hyperpolarized 13C lactate as a substrate for metabolic studies in skeletal muscle in vivo. Carbohydrate metabolism in healthy rat skeletal muscle at rest was studied in different nutritional states using hyperpolarized [1-13C]lactate, a substrate that can be injected at physiological concentrations and leaves other oxidative processes undisturbed. 13C label incorporation from lactate into bicarbonate in fed animals was observed within seconds but was absent after an overnight fast, representing inhibition of the metabolic flux through pyruvate dehydrogenase (PDH). A significant decrease in 13C labeling of alanine was observed comparing the fed and fasted group, and was attributed to a change in cellular alanine concentration and not a decrease in enzymatic flux through alanine transaminase. We conclude that hyperpolarized [1-13C]lactate can be used to study carbohydrate oxidation in resting skeletal muscle at physiological levels. The herein proposed method allows probing simultaneously both PDH activity and variations in alanine tissue concentration, which are associated with metabolic dysfunctions. A simple alteration of the nutritional state demonstrated that the observed pyruvate, alanine, and bicarbonate signals are indeed sensitive markers to probe metabolic changes in vivo.
Resumo:
Expression of the cancer/germ-line antigen NY-ESO-1 by tumors elicits spontaneous humoral and cellular immune responses in some cancer patients. Development of vaccines capable of stimulating such comprehensive immune responses is desirable. We have produced recombinant lentivectors directing the intracellular synthesis of NY-ESO-1 (rLV/ESO) and have analyzed the in vivo immune response elicited by this vector. Single injection of rLV/ESO into HLA-A2-transgenic mice elicited long-lasting B and T cell responses against NY-ESO-1. CD8+ T cells against the HLA-A2-restricted peptide NY-ESO-1(157-165) were readily detectable ex vivo and showed restricted TCR Vbeta usage. Moreover, rLV/ESO elicited a far greater anti-NY-ESO-1(157-165) CD8+ T cell response than peptide- or protein-based vaccines. Anti-NY-ESO-1 antibodies were rapidly induced after immunization and their detection preceded that of the antigen-specific CD8+ T cells. The rLV/ESO also induced CD4+ T cells. These cells played an essential role as their depletion completely abrogated B cell and CD8+ T cell responses against NY-ESO-1. The induced CD4+ T cells were primarily directed against a single NY-ESO-1 epitope spanning amino acids 81-100. Altogether, our study shows that rLV/ESO induces potent and comprehensive immune responses in vivo.
Resumo:
Doxorubicin (DOX) is a potent available antitumor agent; however, its clinical use is limited because of its cardiotoxicity. Cell death is a key component in DOX-induced cardiotoxicity, but its mechanisms are elusive. Here, we explore the role of superoxide, nitric oxide (NO), and peroxynitrite in DOX-induced cell death using both in vivo and in vitro models of cardiotoxicity. Western blot analysis, real-time PCR, immunohistochemistry, flow cytometry, fluorescent microscopy, and biochemical assays were used to determine the markers of apoptosis/necrosis and sources of NO and superoxide and their production. Left ventricular function was measured by a pressure-volume system. We demonstrated increases in myocardial apoptosis (caspase-3 cleavage/activity, cytochrome c release, and TUNEL), inducible NO synthase (iNOS) expression, mitochondrial superoxide generation, 3-nitrotyrosine (NT) formation, matrix metalloproteinase (MMP)-2/MMP-9 gene expression, poly(ADP-ribose) polymerase activation [without major changes in NAD(P)H oxidase isoform 1, NAD(P)H oxidase isoform 2, p22(phox), p40(phox), p47(phox), p67(phox), xanthine oxidase, endothelial NOS, and neuronal NOS expression] and decreases in myocardial contractility, catalase, and glutathione peroxidase activities 5 days after DOX treatment to mice. All these effects of DOX were markedly attenuated by peroxynitrite scavengers. Doxorubicin dose dependently increased mitochondrial superoxide and NT generation and apoptosis/necrosis in cardiac-derived H9c2 cells. DOX- or peroxynitrite-induced apoptosis/necrosis positively correlated with intracellular NT formation and could be abolished by peroxynitrite scavengers. DOX-induced cell death and NT formation were also attenuated by selective iNOS inhibitors or in iNOS knockout mice. Various NO donors when coadministered with DOX but not alone dramatically enhanced DOX-induced cell death with concomitant increased NT formation. DOX-induced cell death was also attenuated by cell-permeable SOD but not by cell-permeable catalase, the xanthine oxidase inhibitor allopurinol, or the NADPH oxidase inhibitors apocynine or diphenylene iodonium. Thus, peroxynitrite is a major trigger of DOX-induced cell death both in vivo and in vivo, and the modulation of the pathways leading to its generation or its effective neutralization can be of significant therapeutic benefit.
Resumo:
A better prediction of the outcome after ischemia and estimation of onset time at early time points would greatly facilitate clinical decisions. Therefore, the aim of the present study was to use magnetic resonance spectroscopy to identify neurochemical markers for outcome prediction at early time points after ischemia.ICR-CD1 mice were subjected to 10-minute, 30-minute or permanent middle cerebral artery occlusion (MCAO). The regional cerebral blood flow (CBF) was monitored in all animals by laser-Doppler flowmetry. All MR studies were carried out in a horizontal 14.1T magnet. Fast spin echo images with T2-weighted parameters were Bacquired to localize the volume of interest and evaluate the lesion size. Immediately after adjustment of field inhomogeneities, localized 1H MRS was applied to obtain the neurochemical profile from the striatum (6-8 μl) or the cortex (2.2-2.5 μl). Six animals (sham group) underwent nearly identical procedures without MCAO.By comparing the evolution of several metabolites in ischemia of varying severity, we observed that glutamine increases early after transient ischemia independently of severity, but decreases in permanent ischemia. On the opposite, GABA increased in permanent ischemia and decreased in transient. We also observed a decrease in the sum of N-acetyl aspartate + glutamate + taurine in all irreversibly damaged tissues, independently of reperfusion and severity. Finally, we have observed that some metabolites decrease exponentially after ischemia. This exponential decrease could be used to determine the time of ischemia onset in permanent ischemia.In Conclusion, magnetic resonance spectroscopy can be used as a prognostic and diagnostic tool to monitor reperfusion, identify reversibly and irreversibly damaged tissue and evaluate the time of ischemia onset. If these Results can be translated to stroke patients, this technique would greatly improve the diagnosis and help with clinical decisions.
Resumo:
Purpose: To study the anti-tumoral effect of sunitinib eluting beads in the rabbit VX2 tumor modelMaterials: VX2 tumor were implanted in the left liver lobe of New-Zealand white rabbits. Seven animals received 0.2ml of DC Beads loaded with 6mg of sunitinb (group 1), 6 animals received 0.2ml of DC Beads (group 2) and 6 animals received NaCl 0.9% intra arterially in the left hepatic artery. One animal in each group was sacrificed at 24 hours and the others were left to survive. Liver enzyme were measured daily. In group 1 plasmatic sunitinib concentration were measured daily by LC MS/MS tandem mass spectroscopy. At day 15 all living animals were sacrficed. After sacrifice, or premature euthanasia the livers were harvested for determination of the VEGF receptor tyrosine kinase activity by western blot and histopathological examination.Results: In group 1, no animal died during follow-up. In group 2 and 3, respectively 2 and 3 animals died during follow-up. In group 1 plasmatic sunitinib level remained under therapeutic concentration during the whole experiment. There was an evident lack of phosphorylation of the RTK In group 1 and there was an augmentation of the RTK phosphorylation in group 2 at 24 hours. No difference in RTK activity was noticable at 15 days. From the histopathological point of view it was unpossible to differentiate treatment induced from spontaneous necrosis of tumors.Conclusions: Administration of sunitinib eluting Beads in VX2 carrying rabbits inhibits the activation of RTK's triggered by ischemia. It also seems to prolong survival of the treated animals.
Resumo:
Urinary incontinence can be treated by endoscopic injection of bulking agents, however, no optimal therapeutic effect has been achieved upon this treatment yet. In the present study, the development of a injectable poly(acrylonitrile) hydrogel paste is described, and its efficacy and histological behavior, once injected into the submucosal space of the minipig bladder, are evaluated. A device was developed to mix poly(acrylonitrile) hydrogel powder with glycerin, used as carrier, prior to injection into the submucosal space of the bladder. Several paste deposits, depending on the size of the bladder, were injected per animal. The implants were harvested at days 7, 14, 21, 28, 84 and 168 and analyzed morphologically and by histology. The persistence of the implants was demonstrated. However, at later time points the implants were split up and surrounded by granulomatous tissue, which was gradually replaced by histiocytes and adipocytes. Transitory focal urothelial metaplasia was observed only at day 7 and moderate foreign body reaction was detected predominantly between the second and fifth week. This study demonstrated the feasibility to develop an injectable paste of poly(acrylonitrile) hydrogel thought to provide the expected bulking effect, necessary for the treatment of urinary incontinence.
Resumo:
The ability of a retinoid X receptor (RXR) to heterodimerize with many nuclear receptors, including LXR, PPAR, NGF1B and RAR, underscores its pivotal role within the nuclear receptor superfamily. Among these heterodimers, PPAR:RXR is considered an important signalling mediator of both PPAR ligands, such as fatty acids, and 9-cis retinoic acid (9-cis RA), an RXR ligand. In contrast, the existence of an RXR/9-cis RA signalling pathway independent of PPAR or any other dimerization partner remains disputed. Using in vivo chromatin immunoprecipitation, we now show that RXR homodimers can selectively bind to functional PPREs and induce transactivation. At the molecular level, this pathway requires stabilization of the homodimer-DNA complexes through ligand-dependent interaction with the coactivator SRC1 or TIF2. This pathway operates both in the absence and in the presence of PPAR, as assessed in cells carrying inactivating mutations in PPAR genes and in wild-type cells. In addition, this signalling pathway via PPREs is fully functional and can rescue the severe hypothermia phenotype observed in fasted PPARalpha-/- mice. These observations have important pharmacological implications for the development of new rexinoid-based treatments.
Resumo:
Previous studies support resorbable biocomposites made of poly(L-lactic acid) (PLA) and beta-tricalcium phosphate (TCP) produced by supercritical gas foaming as a suitable scaffold for tissue engineering. The present study was undertaken to demonstrate the biocompatibility and osteoconductive properties of such a scaffold in a large animal cancellous bone model. The biocomposite (PLA/TCP) was compared with a currently used beta-TCP bone substitute (ChronOS, Dr. Robert Mathys Foundation), representing a positive control, and empty defects, representing a negative control. Ten defects were created in sheep cancellous bone, three in the distal femur and two in the proximal tibia of each hind limb, with diameters of 5 mm and depths of 15 mm. New bone in-growth (osteoconductivity) and biocompatibility were evaluated using microcomputed tomography and histology at 2, 4 and 12 months after surgery. The in vivo study was validated by the positive control (good bone formation with ChronOS) and the negative control (no healing with the empty defect). A major finding of this study was incorporation of the biocomposite in bone after 12 months. Bone in-growth was observed in the biocomposite scaffold, including its central part. Despite initial fibrous tissue formation observed at 2 and 4 months, but not at 12 months, this initial fibrous tissue does not preclude long-term application of the biocomposite, as demonstrated by its osteointegration after 12 months, as well as the absence of chronic or long-term inflammation at this time point.
Resumo:
Ultraviolet A (UVA) radiation represents an important oxidative stress to human skin and certain forms of oxidative stress have been shown to modulate intercellular adhesion molecule-1 (ICAM-1) expression. ICAM-1 has been shown to play an important part in many immune reactions and the perturbations of this molecule by ultraviolet radiation could have implications in many inflammatory responses. An enhancement immunohistochemical method with avidin/biotin was used for analysing the early effects of UVA radiation on human cell cultures and human skin (340-400 nm). Both in vitro and in vivo data show that ICAM-1 staining in epidermal keratinocytes, which was expressed constitutively, decreased in a UVA dose-dependent manner. The decrease was most noted at 3-6 h following UVA radiation with some ICAM-1 staining returning by 48 h post-UVA. ICAM-1 positive staining in the dermis was specific for vascular structures and was increased 24 h after UVA radiation. Cultured dermal fibroblasts exhibited ICAM-1 staining which increased slightly within 6-48 h post-UVA radiation. As epidermal ICAM-1 expression is depleted following UVA radiation and dermal expression increases due to an increase in the vascular structures, ICAM-1 provides a valuable marker following UVA radiation in human skin that can be readily measured in situ.
Resumo:
Objectives: Glutamine synthetase is a critical step in the glutamate-glutamine cycle, the major mechanism of glutamate neurotransmission and is implicated in the mechanism of ammonia toxicity. 15N MRS is an alternative approach to 13C MRS in studying glutamate- glutamine metabolism. 15N MRS studies allow to measure an apparent glutamine synthesis rate (Vsyn) which reflects a combination of the glutamate- glutamine cycle activity (Vnt) and net glutamine accumulation. The net glutamine synthesis (Vsyn-Vnt) can be directly measured from 1H NMR. Therefore, the aim of this study was to perform in vivo localized 1H MRS interleaved with 15N MRS to directly measure the net glutamine synthesis rate and the apparent glutamine synthesis rate under 15N labeled ammonia infusion in the rat brain, respectively. Methods: 1H and 15N MRS data were acquired interleaved on a 9.4T system (Varian/Magnex Scientific) using 5 rats. 15NH4Cl solution was infused continuously into the femoral vein for up to 10 h (4.5 mmol/h/kg).1 The plasma ammonia concentration was increased to 0.95±0.08 mmol/L (Analox GM7 analyzer). 1H spectra were acquired and quantified as described previously.2 15N unlocalized and localized spectra were acquired using the sequence;3 and quantified using AMARES and an external reference method.4 The metabolic model used to analyze the total Gln and 5-15N labeled Gln time courses is shown on Figure 1A. Results: Glutamine concentration increased from 2.5±0.3 to 15±3.3 mmol/kg whereas the total glutamate concentrations remained unchanged (Figure 1B). The linear fit of the time-evolution of the total Gln from the 1H spectra gave the net synthesis flux (Vsyn-Vnt), which was 0.021± 0.006 mmol/min per g (Figure 1D). The 5-15N Gln peak (_271 ppm) was visible in the first and all subsequent scans, whereas the 2-15N Gln/Glu peak (_342 ppm) appeared after B1.5 h (Figure 1C). From the in vivo 5-15N Gln time course, Vsyn = 0.29±0.1 mmol/min per g and a plasma NH3 fractional enrichment of 71%±6% were calculated. Vnt was 0.26±0.1 mmol/min/g, obtained assuming a negligible Gln efflux.5 Vsyn and Vnt were within the range of 13C NMR measurements.6 Conclusion: The combination of 1H and 15N NMR allowed for the first time a direct and localized measurement of Vnt and apparent glutamine synthesis rate. Vnt is approximately one order of magnitude faster than the net glutamine accumulation.
Resumo:
The TCR repertoire of CD8+ T cells specific for Moloney murine leukemia virus (M-MuLV)-associated Ags has been investigated in vitro and in vivo. Analysis of a large panel of established CD8+ CTL clones specific for M-MuLV indicated an overwhelming bias for V beta4 in BALB/c mice and for V beta5.2 in C57BL/6 mice. These V beta biases were already detectable in mixed lymphocyte:tumor cell cultures established from virus-immune spleen cells. Furthermore, direct ex vivo analysis of PBL from BALB/c or C57BL/6 mice immunized with syngeneic M-MuLV-infected tumor cells revealed a dramatic increase in CD8+ cells expressing V beta4 or V beta5.2, respectively. M-MuLV-specific CD8+ cells with an activated (CD62L-) phenotype persisted in blood of immunized mice for at least 2 mo, and exhibited decreased TCR and CD8 levels compared with their naive counterparts. In C57BL/6 mice, most M-MuLV-specific CD8+ CTL clones and immune PBL coexpressed V alpha3.2 in association with V beta5.2. Moreover, these V beta5.2+ V alpha3.2+ cells were shown to recognize the recently described H-2Db-restricted epitope (CCLCLTVFL) encoded in the leader sequence of the M-MuLV gag polyprotein. Collectively, our data demonstrate a highly restricted TCR repertoire in the CD8+ T cell response to M-MuLV-associated Ags in vivo, and suggest the potential utility of flow-microfluorometric analysis of V beta and V alpha expression in the diagnosis and monitoring of viral infections.