336 resultados para effet alpha
Rapid identification of malaria vaccine candidates based on alpha-helical coiled coil protein motif.
Resumo:
To identify malaria antigens for vaccine development, we selected alpha-helical coiled coil domains of proteins predicted to be present in the parasite erythrocytic stage. The corresponding synthetic peptides are expected to mimic structurally "native" epitopes. Indeed the 95 chemically synthesized peptides were all specifically recognized by human immune sera, though at various prevalence. Peptide specific antibodies were obtained both by affinity-purification from malaria immune sera and by immunization of mice. These antibodies did not show significant cross reactions, i.e., they were specific for the original peptide, reacted with native parasite proteins in infected erythrocytes and several were active in inhibiting in vitro parasite growth. Circular dichroism studies indicated that the selected peptides assumed partial or high alpha-helical content. Thus, we demonstrate that the bioinformatics/chemical synthesis approach described here can lead to the rapid identification of molecules which target biologically active antibodies, thus identifying suitable vaccine candidates. This strategy can be, in principle, extended to vaccine discovery in a wide range of other pathogens.
Resumo:
Release of alpha-MSH from rat hypothalamic slices was characterized with respect to ionic requirements and possible diurnal variations using a sensitive radioimmunoassay. Addition of 47 mM KCl to the superfusion medium resulted in a twofold increase in alpha-MSH functions as a neurotransmitter or neuromodulator in the hypothalamus. Both spontaneous and potassium-induced alpha-MSH release compared to spontaneous release. Removal of calcium from the superfusion medium abolished the potassium-evoked release of alpha-MSH. This supports the concept that alpha-MSH release were related to diurnal variation. Marked release from the slices was observed at 10.10 h, corresponding to a peak in the alpha-MSH concentration in the hypothalamus [18] and to a lower levels of alpha-MSH in the blood. Contrarily, no significant release from the hypothalamus was obtained at 17.00 h when hypothalamic alpha-MSH content was low, but blood levels exhibited a peak. These findings suggest that there are differences in the regulation of the alpha-MSH from the pituitary and that in the hypothalamus.
Resumo:
Cyclooxygenase-2 (COX-2), a key enzyme in arachidonic acid metabolism, is overexpressed in many cancers. Inhibition of COX-2 by nonsteroidal anti-inflammatory drugs (NSAIDs) reduces the risk of cancer development in humans and suppresses tumor growth in animal models. The anti-cancer effect of NSAIDs seems to involve suppression of tumor angiogenesis, but the underlying mechanism is not completely understood. Integrin alpha V beta 3 is an adhesion receptor critically involved in mediating tumor angiogenesis. Here we show that inhibition of endothelial-cell COX-2 by NSAIDs suppresses alpha V beta 3-dependent activation of the small GTPases Cdc42 and Rac, resulting in inhibition of endothelial-cell spreading and migration in vitro and suppression of fibroblast growth factor-2-induced angiogenesis in vivo. These results establish a novel functional link between COX-2, integrin alpha V beta 3 and Cdc42-/Rac-dependent endothelial-cell migration. Moreover, they provide a rationale to the understanding of the anti-angiogenic activity of NSAIDs.
Resumo:
We have mutated a single residue, Thr373 [corrected], in the C-terminal portion of the third intracellular loop of the alpha 2C10-adrenergic receptor into five different amino acids. In analogy with the effect of similar mutations in the alpha 1B- and beta 2-adrenergic receptors, these substitutions resulted in two major biochemical modifications: 1) increased constitutive activity of the alpha 2-adrenergic receptor leading to agonist-independent inhibition of adenylyl cyclase and 2) increased affinity of the receptor for binding agonist but not antagonists. The increased constitutive activity of the mutated alpha 2-adrenergic receptors could be inhibited by pertussis toxin, clearly indicating that it results from spontaneous ligand-independent receptor coupling to Gi. In contrast, the increased affinity of the mutant receptors for binding agonists was unaffected by pertussis toxin treatment, indicating that this is an inherent property of the receptors not dependent on interaction with Gi. Coexpression of the receptor mutants with the receptor-specific kinase, beta ARK1, indicated that the constitutively active alpha 2-adrenergic receptors are substrates for beta-adrenergic receptor kinase (beta ARK)-mediated phosphorylation even in the absence of agonist. These findings strengthen the idea that constitutively active adrenergic receptors mimic the "active" state of a G protein-coupled receptor adopting conformations similar to those induced by agonist when it binds to wild type receptors. In addition, these results extend the notion that in the adrenergic receptor family the C-terminal portion of the third intracellular loop plays a general role in the processes involved in receptor activation.
Resumo:
The expression patterns of the three different peroxisome proliferator-activated receptor (PPAR) isotypes have been determined during rat embryonic development by in situ hybridization. The expression of PPARalpha starts late in development, with increasing levels in organs such as liver, kidney, intestine, and pancreas, in which it will also be present later in adulthood to regulate its specific target genes. PPARalpha is also transiently expressed in the embryonic epidermis and central nervous system. PPARgamma presents a very restricted pattern of expression, being strongly expressed in brown adipose tissue, in which differentiation it has been shown to participate. Like PPARalpha, it is also expressed transiently in the central nervous system. Interestingly, PPARalpha, -beta and -gamma are coexpressed at high levels in brown adipose tissue. Finally, the high and ubiquitous expression of PPARbeta suggests some fundamental role(s) that this receptor might play throughout development.
Resumo:
The amiloride-sensitive epithelial Na channel (ENaC) is a heteromultimeric channel made of three alpha beta gamma subunits. The structures involved in the ion permeation pathway have only been partially identified, and the respective contributions of each subunit in the formation of the conduction pore has not yet been established. Using a site-directed mutagenesis approach, we have identified in a short segment preceding the second membrane-spanning domain (the pre-M2 segment) amino acid residues involved in ion permeation and critical for channel block by amiloride. Cys substitutions of Gly residues in beta and gamma subunits at position beta G525 and gamma G537 increased the apparent inhibitory constant (Ki) for amiloride by > 1,000-fold and decreased channel unitary current without affecting ion selectivity. The corresponding mutation S583 to C in the alpha subunit increased amiloride Ki by 20-fold, without changing channel conducting properties. Coexpression of these mutated alpha beta gamma subunits resulted in a non-conducting channel expressed at the cell surface. Finally, these Cys substitutions increased channel affinity for block by external Zn2+ ions, in particular the alpha S583C mutant showing a Ki for Zn2+ of 29 microM. Mutations of residues alpha W582L, or beta G522D also increased amiloride Ki, the later mutation generating a Ca2+ blocking site located 15% within the membrane electric field. These experiments provide strong evidence that alpha beta gamma ENaCs are pore-forming subunits involved in ion permeation through the channel. The pre-M2 segment of alpha beta gamma subunits may form a pore loop structure at the extracellular face of the channel, where amiloride binds within the channel lumen. We propose that amiloride interacts with Na+ ions at an external Na+ binding site preventing ion permeation through the channel pore.
Resumo:
Dans certaines conditions pathologiques, telles que l'hypertension artérielle ou l'infarctus du myocarde, le coeur répond à une augmentation de la post-charge par des processus de remodelage aboutissant à une hypertrophie du ventricule gauche. L'hypertrophie cardiaque est caractérisée par une croissance hypertrophique des cardiomyocytes, ainsi que par une différenciation des fibroblastes en un phenotype présentant une capacité accrue de synthèse protéiques, nommés myofibroblastes. Ceci résulte en une accumulation excessive des constituants de la matrice extracellulaire, ou autrement dit fibrose. En raison de son effet délétère sur la contractilité du coeur, menant sur le long terme à une insuffisance cardiaque, de nombreux efforts ont été déployés, afin de définir les mécanismes moléculaires impliqués dans la réponse profibrotique. A ce jour, de nombreuses études indiquent que la petite GTPase RhoA pourrait être un médiateur important de la réponse profibrotique du myocarde. Cependant, les facteurs d'échanges impliqués dans la transduction de signaux profibrotiques, via la régulation de son activité au niveau des fibroblastes cardiaques, n'ont pas encore été identifiés. De précédentes études menées dans le laboratoire, ont identifiées une nouvelle protein d'ancrage de la PKA, exprimée majoritairement dans le coeur, nommée AKAP-Lbc. Il a été montré que cette protéine, en plus de sa fonction de protein d'ancrage, possédait une activité de facteur d'échange de nucléotide guanine (GEF) pour la petite GTPase RhoA. Au niveau des cardiomyocytes, il a été montré que l'AKAP-Lbc participe à une voie de signalisation pro-hypertrophique, incluant la sous-unité alpha de la protéine G hétérotrimerique G12 et RhoA. Chose intéressante, des observations antérieures à cette étude, indiquent que dans le coeur, l'AKAP-Lbc est également exprimée dans les fibroblastes. Cependant aucunes études n'a encore reporté de fonction pour ce facteur d'échange dans les fibroblastes cardiaques. Dans ce travail, les résultats obtenus indiquent que dans les fibroblastes cardiaques, I'activation de RhoA par l'AKAP-Lbc est impliquée dans la transmission de signaux profibrotiques, en aval des récépteurs à l'angiotensine II. En particulier, nous avons observé que la suppression de l'expression de l'AKAP-Lbc dans les fibroblastes ventriculaires de rat adultes, réduisait fortement Γ activation de Rho induite par l'angiotensine II, la déposition de collagène, la capacité migratoire des fibroblastes ainsi que leur différenciation en myofibroblastes. A notre connaissance, l'AKAP-Lbc est le premier RhoGEF identifié comme médiateur de la réponse profibrotique dans les fibroblastes cardiaques. - In pathological conditions such as chronic hypertension or myocardial infarction, the myocardium is subjected to various biomechanical and biochemical stresses, and undergoes an adverse ventricular remodelling process associated with cardiomyocytes hypertrophy and excess deposition of extracellular matrix proteins resulting in fibrosis. During the fibrotic response, cardiac fibroblasts differentiate into a more mobile and contractile phenotype termed myofibroblasts. These cells, possess a greater synthetic ability to produce ECM proteins and have been implicated in diseases with increased ECM deposition including cardiac fibrosis. Because fibrosis impairs myocardial contractility and is associated with the progression to heart failure, a major cause of lethality worldwide, many efforts have been made to define the molecular players involved in this process. During these last years, increasing evidence suggests a role for the small GTPase RhoA in mediating the fibrotic response in CFbs. However the identity of the exchange factors that modulate its activity and transduce fibrotic signals in CFbs is still unknown. Earlier work in our laboratory identified a novel PKA anchoring protein expressed in the heart termed AKAP-Lbc that has been shown to function as anchoring protein as well as a guanine nucleotide exchange factor (GEF) for the small GTPase RhoA. In response to several hypertrophic stimuli we have shown that RhoGEF activity of AKAP-Lbc mediated by Gan promotes the activation of a signaling pathway including RhoA, leading to cardiomyocytes hypertrophy. Within the heart, previous observations made in the laboratory indicated that AKAP-Lbc was also expressed in fibroblasts. However its role in cardiac fibroblasts remained to be determined. In the present study, we show that AKAP-Lbc is critical for activating RhoA and transducing profibrotic signals downstream of angiotensin II receptors in cardiac fibroblasts. In particular, our results indicate that suppression of AKAP-Lbc expression by infecting adult rat ventricular fibroblasts with lentiviruses encoding AKAP-Lbc specific short hairpin RNAs strongly reduces angiotensin II-induced RhoA activation, collagen deposition as well as cell migration and differentiation. These findings identify AKAP-Lbc as the first Rho-guanine nucleotide exchange factor involved in a profibrotic signalling pathway at the level of cardiac fibroblasts.
Resumo:
T cells belong to two separate lineages based on surface expression of alpha beta or gamma delta T cell receptors (TCR). Since during thymus development TCR beta, gamma, and delta genes rearrange before alpha genes, and gamma delta cells appear earlier than alpha beta cells, it has been assumed that gamma delta cells are devoid of TCR alpha rearrangements. We show here that this is not the case, since mature adult, but not fetal, thymic gamma delta cells undergo VJ alpha rearrangements more frequently than immature alpha beta lineage thymic precursors. Sequence analysis shows VJ alpha rearrangements in gamma delta cells to be mostly (70%) nonproductive. Furthermore, VJ alpha rearrangements in gamma delta cells are transcribed normally and, as shown by analysis of TCR beta-/- mice, occur independently of productive VDJ beta rearrangements. These data are interpreted in the context of a model in which precursors of alpha beta and gamma delta cells differ in their ability to express a functional pre-TCR complex.
Resumo:
Problématique : La maladie de Fabry est une maladie métabolique à stockage lysosomal. C'est une maladie héreditaire à transmission récessive qui concerne l'enzyme alpha-Galactosidase A. Le gène de l'alpha-Galactosidase A (GLA) se trouve au niveau du bras long du chromosome X «carté en Xq21.33-Xq22 ». L'enzyme muté ne recouvre plus son rôle catabolisateur et il ne métabolise pas le substrat globotriaosylceramide (Gb3). Par conséquence le Gb3 s'accumule dans tous les tissus. Dans les parois des vaisseaux sanguins le Gb3 s'accumule dans l'endothelium, la tunique interne des vaisseaux sanguins. Ce déficit métabolique se traduit par l'épaississement de la paroi vasculaire, des processus d'infarctus et ischémies du tissu cardiaque, rénal et cérébral. L'implication cardiaque de la maladie de Fabry est décrite chez plus de 78% des patients affectés par la maladie et se manifeste par une hypertrophie cardiaque du ventricule gauche. Toutefois, il n'existe pas de relation étroite entre hypertrophie cardiaque et le Gb3. La sphingosine 1-phosphate à été identifiée dans notre laboratoire et proposée comme facteur de croissance à l'origine du remodelage cardiovasculaire. De plus, la Globotriaosylsphingosine (Lyso-Gb3) à été aussi proposée comme facteur vasoactif chez les patients Fabry. Objectif : L'identification d'un biomarqueur pour le diagnostic et le suivi thérapeutique de la maladie de Fabry représente une domaine d'investigation active en recherche scientifique. Le Gb3 plasmatique ou dans les urines, la biopsie rénale ou cardiaque qui est mis en évidence grâce à la microscopie électronique sous forme de corps concentrique lamellaires, constituent les biomarqueurs classiques de la maladie de Fabry. Dernièrement, le Lyso-Gb3 et le Sphingosine-1 phosphate (S1P) ont été proposés comme marqueurs du remodelage cardiovasculaire. Le but de ce travail est de rassembler et de discuter la littérature concernant ces nouveaux marqueurs et, d'étudier une possible interaction entre Lyso-Gb3 et le S1P. Méthodologie : Rassembler la littérature scientifique et analyser l'implication de ces marqueurs dans la maladie de Fabry et leur effets cardiovasculaires. De plus, un travail expérimental est effectué. Ce travail consiste en l'identification d'une relation possible entre le Lyso-Gb3 et le S1P. Résultats : Avec ce travail on a cherché à actualiser et mettre à jour les notions concernant les biomarqueurs qui prennent place dans cette pathologie et les connaissances qu'on possède à ce jour sur les manifestations cardiovasculaires et neurologiques.La recherche d'un biomarqueur prime par le fait qu'un nombre considerable de patients est sous-diagnostiqués pour la maladie de Fabry et que entre les taux de substrat enzymatique accumulé dans les tissus et l'hypertrophie cardiaque, on peut constater une discordance. Grâce à ce travail expérimental, on a exclue la possibilité d'un effet précurseur du lyso-Gb3 pour le S1P. Nous avons montré que le Lyso-Gb3 est reconnu par les récepteurs du S1P avec des effets commun pour les S1P1-3 et différents pour le S1P2. Les taux du Lyso-Gb3 et du S1P doivent être mesuré chez les patients Fabry et une stratégie thérapeutique doit prendre en compte le rapport S1P/Lyso-Gb3.
Resumo:
BACKGROUND: The purpose of this study is to describe the experience of Jules Gonin Eye Hospital on the long-term outcome of anti-TNF-alpha therapy in chronic non-infectious uveitis. PATIENTS AND METHODS: We identified and followed those patients with chronic non-infectious uveitis who received systemic anti-TNF-alpha therapy. Anti-TNF-alpha therapy was administered when no response had been obtained with classical immunosuppressive therapies or in the presence of severe rheumatoid disease. RESULTS: Fifteen patients (28 eyes), 7 male and 8 female (mean age, 43 years; range: 7 to 70 years) were identified. Diagnoses included HLA-B27-associated anterior uveitis (n = 4), sarcoidosis (n = 2), juvenile idiopathic arthritis (n = 2), idiopathic retinal vasculitis with uveitis (n = 2), pars planitis (n = 2), Adamantiades-Behçet disease (n = 1), birdshot retinochoroidopathy (n = 1), and Crohn's disease (n = 1). Mean duration of ocular disease was 8 years (range: 1 to 29 years). Treatment with infliximab (n = 11), etanercept (n = 2), or adalimumab (n = 2) was initiated. One patient with etanercept was switched to infliximab due to lack of clinical response. Clinical and angiographic regression of uveitis was observed within the first two months of therapy in all patients, and was maintained throughout the entire follow-up period (mean 18 months; range: 3 - 72 months). Recurrence was observed in 3 patients, and resolved after adjustment of therapy. Adverse events were recorded in only one patient (arterial hypotension). CONCLUSIONS: In this series of patients with chronic non-infectious uveitis, anti-TNF-alpha therapy was effective and safe. Further clinical studies are needed to determine an adequate duration of therapy.
Resumo:
Sequentially along B cell differentiation, the different classes of membrane Ig heavy chains associate with the Ig alpha/Ig beta heterodimer within the B cell receptor (BCR). Whether each Ig class conveys specific signals adapted to the corresponding differentiation stage remains debated. We investigated the impact of the forced expression of an IgA-class receptor throughout murine B cell differentiation by knocking in the human C alpha Ig gene in place of the S mu region. Despite expression of a functional BCR, homozygous mutant mice showed a partial developmental blockade at the pro-B/pre-BI and large pre-BII cell stages, with decreased numbers of small pre-BII cells. Beyond this stage, peripheral B cell compartments of reduced size developed and allowed specific antibody responses, whereas mature cells showed constitutive activation and a strong commitment to plasma cell differentiation. Secreted IgA correctly assembled into polymers, associated with the murine J chain, and was transported into secretions. In heterozygous mutants, cells expressing the IgA allele competed poorly with those expressing IgM from the wild-type allele and were almost undetectable among peripheral B lymphocytes, notably in gut-associated lymphoid tissues. Our data indicate that the IgM BCR is more efficient in driving early B cell education and in mucosal site targeting, whereas the IgA BCR appears particularly suited to promoting activation and differentiation of effector plasma cells.
Resumo:
Valpha14 invariant (Valpha14i) NKT cells are a subset of regulatory T cells that utilize a semi-invariant TCR to recognize glycolipids associated with monomorphic CD1d molecules. During development in the thymus, CD4(+)CD8(+) Valpha14i NKT precursors recognizing endogenous CD1d-associated glycolipids on other CD4(+)CD8(+) thymocytes are selected to undergo a maturation program involving sequential expression of CD44 and NK-related markers such as NK1.1. The molecular requirements for Valpha14i NKT cell maturation, particularly at early developmental stages, remain poorly understood. In this study, we show that CD4-Cre-mediated T cell-specific inactivation of c-Myc, a broadly expressed transcription factor with a wide range of biological activities, selectively impairs Valpha14i NKT cell development without perturbing the development of conventional T cells. In the absence of c-Myc, Valpha14i NKT cell precursors are blocked at an immature CD44(low)NK1.1(-) stage in a cell autonomous fashion. Residual c-Myc-deficient immature Valpha14i NKT cells appear to proliferate normally, cannot be rescued by transgenic expression of BCL-2, and exhibit characteristic features of immature Valpha14i NKT cells such as high levels of preformed IL-4 mRNA and the transcription factor promyelocytic leukemia zinc finger. Collectively our data identify c-Myc as a critical transcription factor that selectively acts early in Valpha14i NKT cell development to promote progression beyond the CD44(low)NK1.1(-) precursor stage.
Resumo:
Hypoxia is an essential component of tumor microenvironment. In this study, we investigated the influence of hypoxia (1% PO(2)) on CTL-mediated tumor cell lysis. We demonstrate that exposure of target tumor cells to hypoxia has an inhibitory effect on the CTL clone (Heu171)-induced autologous target cell lysis. Such inhibition correlates with hypoxia-inducible factor-1alpha (HIF-1alpha) induction but is not associated with an alteration of CTL reactivity as revealed by granzyme B polarization or morphological change. Western blot analysis indicates that although hypoxia had no effect on p53 accumulation, it induced the phosphorylation of STAT3 in tumor cells by a mechanism at least in part involving vascular endothelial growth factor secretion. We additionally show that a simultaneous nuclear translocation of HIF-1alpha and phospho-STAT3 was observed. Interestingly, gene silencing of STAT3 by small interfering RNA resulted in HIF-1alpha inhibition and a significant restoration of target cell susceptibility to CTL-induced killing under hypoxic conditions by a mechanism involving at least in part down-regulation of AKT phosphorylation. Moreover, knockdown of HIF-1alpha resulted in the restoration of target cell lysis under hypoxic conditions. This was further supported by DNA microarray analysis where STAT3 inhibition resulted in a partly reversal of the hypoxia-induced gene expression profile. The present study demonstrates that the concomitant hypoxic induction of phospho-STAT3 and HIF-1alpha are functionally linked to the alteration of non-small cell lung carcinoma target susceptibility to CTL-mediated killing. Considering the eminent functions of STAT3 and HIF-1alpha in the tumor microenvironment, their targeting may represent novel strategies for immunotherapeutic intervention.