253 resultados para driving safety, homonymous hemianopia, quadrantanopia, imaging
Resumo:
Laboratory safety data are routinely collected in clinical studies for safety monitoring and assessment. We have developed a truncated robust multivariate outlier detection method for identifying subjects with clinically relevant abnormal laboratory measurements. The proposed method can be applied to historical clinical data to establish a multivariate decision boundary that can then be used for future clinical trial laboratory safety data monitoring and assessment. Simulations demonstrate that the proposed method has the ability to detect relevant outliers while automatically excluding irrelevant outliers. Two examples from actual clinical studies are used to illustrate the use of this method for identifying clinically relevant outliers.
Resumo:
PURPOSE: To investigate the potential of free-breathing 3D steady-state free precession (SSFP) imaging with radial k-space sampling for coronary MR-angiography (MRA), coronary projection MR-angiography and coronary vessel wall imaging. MATERIALS AND METHODS: A navigator-gated free-breathing T2-prepared 3D SSFP sequence (TR = 6.1 ms, TE = 3.0 ms, flip angle = 120 degrees, field-of-view = 360 mm(2)) with radial k-space sampling (384 radials) was implemented for coronary MRA. For projection coronary MRA, this sequence was combined with a 2D selective aortic spin tagging pulse. Coronary vessel wall imaging was performed using a high-resolution inversion-recovery black-blood 3D radial SSFP sequence (384 radials, TR = 5.3 ms, TE = 2.7 ms, flip angle = 55 degrees, reconstructed resolution 0.35 x 0.35 x 1.2 mm(3)) and a local re-inversion pulse. Six healthy volunteers (two for each sequence) were investigated. Motion artifact level was assessed by two radiologists. Results: In coronary MRA, the coronary lumen was displayed with a high signal and high contrast to the surrounding lumen. Projection coronary MRA demonstrated selective visualization of the coronary lumen while surrounding tissue was almost completely suppressed. In coronary vessel wall imaging, the vessel wall was displayed with a high signal when compared to the blood pool and the surrounding tissue. No visible motion artifacts were seen. Conclusion: 3D radial SSFP imaging enables coronary MRA, coronary projection MRA and coronary vessel wall imaging with a low motion artifact level.
Resumo:
BACKGROUND: European Surveillance of Congenital Anomalies (EUROCAT) is a network of population-based congenital anomaly registries in Europe surveying more than 1 million births per year, or 25% of the births in the European Union. This paper describes the potential of the EUROCAT collaboration for pharmacoepidemiology and drug safety surveillance. METHODS: The 34 full members and 6 associate members of the EUROCAT network were sent a questionnaire about their data sources on drug exposure and on drug coding. Available data on drug exposure during the first trimester available in the central EUROCAT database for the years 1996-2000 was summarised for 15 out of 25 responding full members. RESULTS: Of the 40 registries, 29 returned questionnaires (25 full and 4 associate members). Four of these registries do not collect data on maternal drug use. Of the full members, 15 registries use the EUROCAT drug code, 4 use the international ATC drug code, 3 registries use another coding system and 7 use a combination of these coding systems. Obstetric records are the most frequently used sources of drug information for the registries, followed by interviews with the mother. Only one registry uses pharmacy data. Percentages of cases with drug exposure (excluding vitamins/minerals) varied from 4.4% to 26.0% among different registries. The categories of drugs recorded varied widely between registries. CONCLUSIONS: Practices vary widely between registries regarding recording drug exposure information. EUROCAT has the potential to be an effective collaborative framework to contribute to post-marketing drug surveillance in relation to teratogenic effects, but work is needed to implement ATC drug coding more widely, and to diversify the sources of information used to determine drug exposure in each registry.
Resumo:
Cannabis use has increased considerably during the last 15 years. One of the major problems dealing with cannabis use is driving under the influence of drugs. With the exception of ethyl alcohol, the majority of the epidemiological studies have shown that cannabis is the most frequently detected substance in people suspected of driving under the influence of drugs. Experimental studies are therefore needed to assess cannabis effects on driving capability. Many studies indicate that cannabis impairs psychomotor performance. This impairment becomes obvious when high doses of cannabis are taken, when ethyl alcohol or other drugs are simultaneously ingested, or when sustained attention is needed. Moreover, cannabis effects are qualitatively different from those observed after ethyl alcohol consumption. In forensic practice, cannabis impairment of driving performance must be related to cannabinoids blood concentrations. To facilitate the interpretation of cannabinoids blood levels, several models were set up recently. These models must be further improved in order to fit in with all circumstances of cannabis use.
Resumo:
Introduction: In forensic toxicology, cocaine is better known for its powerful stimulating effects of nervous system and its high potential for recreational abuse, than for his therapeutic use. However, cocaine is still use as a topical anesthetic and peripheral vasoconstrictor in surgeries of eye, ear, nose and throat. Last decade, an increase of the presence of cocaine and metabolites in blood samples of drivers suspected to drive under the influence of drugs (DUID) was observed in Switzerland (Augsburger et al., Forensic Sci Int 153 (2005) 11-15; Senna et al., Forensic Sci Int 198 (2010) 11-16). Observed blood concentration ranges of cocaine and benzoylecgonine were 10-925 μg/L and 20-5200 μg/L, respectively. Since 2005, zero-tolerance approach was introduced in the Swiss legislation for different substances, especially cocaine (analytical cutoff: 15 μg/L). Thus, the interpretation often amounts to determine if the concentration is situated above or under the limit. However, it is important for the interpretation to take into account the context and to be critical with the obtained results, at the risk of ending in erroneous conclusions. Methods: Systematical toxicological analyses were performed on blood and urine, if available, for 5 DUID cases, as already published (Augsburger et al., Forensic Sci Int 153 (2005)). Positive results were confirmed and drugs were quantified in biological samples by GCMS, GC-MS/MS or LC-MS/MS. Results: Administration of cocaine after traffic accident was identified in five cases. All people were admitted to the emergency room because of severe trauma. Maxillofacial surgery was done shortly after admission to the emergency room, involving use of nasal application of cocaine (swab). For all cases, use of cocaine swab was not mentioned in the document filled by the police and by medical staff requested for blood and urine sampling. The information was obtained retrospectively after consultation of the medical records, without precise indication of the application time or dose. Case 1. A 83-year old man (pedestrian) was hit by a car. Blood (+11h after the accident): cocaine (16 μg/L), benzoylecgonine (370 μg/L). Urine: cocaine (1700 μg/L), benzoylecgonine (560 μg/L). Case 2. A 84-year old woman (pedestrian) was hit by a car. Blood (+1.5h after the accident): cocaine (230 μg/L), benzoylecgonine (370 μg/L). Urine was not available. Hair (+4 months after the accident): segment 1 (0-2 cm), cocaine not detected; segment 2 (2-4 cm), cocaine: <0.5 ng/mg. Case 3. A 66-year old man was involved in a car/car accident. He died 2 hours and 5 minutes after the crash. Blood (+1.5h after the accident): cocaine and metabolites not detected. Blood (+2h after the accident): cocaine (1750 μg/L), benzoylecgonine (460 μg/L). Blood (post-mortem): cocaine (370 μg/L), benzoylecgonine (200 μg/L). Urine (+1.5h after the accident): cocaine not detected. Case 4. A 57-year old woman on a motor scooter was hit by a car. She died 2 hours and 10 minutes after the crash. Blood (+0.5h after the accident): cocaine and metabolites not detected. Urine (post-mortem): cocaine (<20 μg/L), benzoylecgonine (120 μg/L). Case 5. A 30-year old man was involved in a car accident. Blood (+4h after the accident): cocaine (29 μg/L), benzoylecgonine (< 20 μg/L). Urine (+4h after the accident): cocaine and metabolites not detected. Ethanol (1,32 g/kg) and cannabinoids (THC (2,0 μg/L), THCCOOH (38 μg/L)) were also detected in blood. Conclusion: To our knowledge, this is the first description of DUID cases involving therapeutic use of cocaine after an accident. These results indicate that even if a per se law is effective for prosecution case of DUID, a critical interpretation of the results is always needed, especially if a medical intervention occurs after an accident.
Resumo:
Objective: The Agency for Healthcare Research and Quality (AHRQ) developed Patient Safety Indicators (PSIs) for use with ICD-9-CM data. Many countries have adopted ICD-10 for coding hospital diagnoses. We conducted this study to develop an internationally harmonized ICD-10 coding algorithm for the AHRQ PSIs. Methods: The AHRQ PSI Version 2.1 has been translated into ICD-10-AM (Australian Modification), and PSI Version 3.0a has been independently translated into ICD-10-GM (German Modification). We converted these two country-specific coding algorithms into ICD-10-WHO (World Health Organization version) and combined them to form one master list. Members of an international expert panel-including physicians, professional medical coders, disease classification specialists, health services researchers, epidemiologists, and users of the PSI-independently evaluated this master list and rated each code as either "include," "exclude," or "uncertain," following the AHRQ PSI definitions. After summarizing the independent rating results, we held a face-to-face meeting to discuss codes for which there was no unanimous consensus and newly proposed codes. A modified Delphi method was employed to generate a final ICD-10 WHO coding list. Results: Of 20 PSIs, 15 that were based mainly on diagnosis codes were selected for translation. At the meeting, panelists discussed 794 codes for which consensus had not been achieved and 2,541 additional codes that were proposed by individual panelists for consideration prior to the meeting. Three documents were generated: a PSI ICD-10-WHO version-coding list, a list of issues for consideration on certain AHRQ PSIs and ICD-9-CM codes, and a recommendation to WHO to improve specification of some disease classifications. Conclusion: An ICD-10-WHO PSI coding list has been developed and structured in a manner similar to the AHRQ manual. Although face validity of the list has been ensured through a rigorous expert panel assessment, its true validity and applicability should be assessed internationally.
Resumo:
MRI tractography is the mapping of neural fiber pathways based on diffusion MRI of tissue diffusion anisotropy. Tractography based on diffusion tensor imaging (DTI) cannot directly image multiple fiber orientations within a single voxel. To address this limitation, diffusion spectrum MRI (DSI) and related methods were developed to image complex distributions of intravoxel fiber orientation. Here we demonstrate that tractography based on DSI has the capacity to image crossing fibers in neural tissue. DSI was performed in formalin-fixed brains of adult macaque and in the brains of healthy human subjects. Fiber tract solutions were constructed by a streamline procedure, following directions of maximum diffusion at every point, and analyzed in an interactive visualization environment (TrackVis). We report that DSI tractography accurately shows the known anatomic fiber crossings in optic chiasm, centrum semiovale, and brainstem; fiber intersections in gray matter, including cerebellar folia and the caudate nucleus; and radial fiber architecture in cerebral cortex. In contrast, none of these examples of fiber crossing and complex structure was identified by DTI analysis of the same data sets. These findings indicate that DSI tractography is able to image crossing fibers in neural tissue, an essential step toward non-invasive imaging of connectional neuroanatomy.
Resumo:
Introduction : Driving is a complex everyday task requiring mechanisms of perception, attention, learning, memory, decision making and action control, thus indicating that involves numerous and varied brain networks. If many data have been accumulated over time about the effects of alcohol consumption on driving capability, much less is known about the role of other psychoactive substances, such as cannabis (Chang et al.2007, Ramaekers et al, 2006). Indeed, the solicited brain areas during safe driving which could be affected by cannabis exposure have not yet been clearly identified. Our aim is to study these brain regions during a tracking task related to driving skills and to evaluate the modulation due to the tolerance of cannabis effects. Methods : Eight non-smoker control subjects participated to an fMRI experiment based on a visuo-motor tracking task, alternating active tracking blocks with passive tracking viewing and rest condition. Half of the active tracking conditions included randomly presented traffic lights as distractors. Subjects were asked to track with a joystick with their right hand and to press a button with their left index at each appearance of a distractor. Four smoking subjects participated to the same fMRI sessions once before and once after smoking cannabis and a placebo in two independent cross-over experiments. We quantified the performance of the subjects by measuring the precision of the behavioural responses (i.e. percentage of time of correct tracking and reaction times to distractors). Functional MRI data were acquired using on a 3.0T Siemens Trio system equipped with a 32-channel head coil. BOLD signals will be obtained with a gradient-echo EPI sequence (TR=2s, TE=30ms, FoV=216mm, FA=90°, matrix size 72×72, 32 slices, thickness 3mm). Preprocessing, single subject analysis and group statistics were conducted on SPM8b. Results were thresholded at p<0.05 (FWE corrected) and at k>30 for spatial extent. Results : Behavioural results showed a significant impairment in task and cognitive test performance of the subjects after cannabis inhalation when comparing their tracking accuracy either to the controls subjects or to their performances before the inhalation or after the placebo inhalation (p<0.001 corrected). In controls, fMRI BOLD analysis of the active tracking condition compared to the passive one revealed networks of polymodal areas in superior frontal and parietal cortex dealing with attention and visuo-spatial coordination. In accordance to what is known of the visual and sensory motor networks we found activations in V4, frontal eye-field, right middle frontal gyrus, intra-parietal sulcus, temporo-parietal junction, premotor and sensory-motor cortex. The presence of distractors added a significant activation in the precuneus. Preliminary results on cannabis smokers in the acute phase, compared either to themselves before the cannabis inhalation or to control subjects, showed a decreased activation in large portions of the frontal and parietal attention network during the simple tracking task, but greater involvement of precuneus, of the superior part of intraparietal sulcus and middle frontal gyrus bilaterally when distractors were present in the task. Conclusions : Our preliminary results suggest that acute cannabis smoking alters performances and brain activity during active tracking tasks, partly reorganizing the recruitment of brain areas of the attention network.
Resumo:
BACKGROUND: Early detection is a major goal in the management of malignant melanoma. Besides clinical assessment many noninvasive technologies such as dermoscopy, digital dermoscopy and in vivo laser scanner microscopy are used as additional methods. Herein we tested a system to assess lesional perfusion as a tool for early melanoma detection.¦METHODS: Laser Doppler flow (FluxExplorer) and mole analyser (MA) score (FotoFinder) were applied to histologically verified melanocytic nevi (33) and malignant melanomas (12).¦RESULTS: Mean perfusion and MA scores were significantly increased in melanoma compared to nevi. However, applying an empirically determined threshold of 16% perfusion increase only 42% of the melanomas fulfilled the criterion of malignancy, whereas with the mole analyzer score 82% of the melanomas fulfilled the criterion of malignancy.¦CONCLUSION: Laser Doppler imaging is a highly sensitive technology to assess skin and skin tumor perfusion in vivo. Although mean perfusion is higher in melanomas compared to nevi the high numbers of false negative results hamper the use of this technology for early melanoma detection.
Resumo:
Echocardiography is the preferred initial test to assess cardiac morphology and ventricular function. Cardiac MRI enables an optimal visualisation of heart muscle without contrast injection, and precise measurement of the ventricular volumes and systolic function. It is therefore an ideal test for patients with poor echocardiographic windows or for the specific evaluation of right heart chambers. Heart CT also remarkably images heart muscle and precisely measures ventricular systolic function after intravenous injection of iodinated contrast. Coronary CT may also, in selected cases, avoid the need for diagnostic coronary angiography. Although very accurate, these imaging modalities are expensive and may be contra-indicated for a particular patient. Their use in clinical practice has to follow the accepted guidelines.
Resumo:
BACKGROUND: In the United States, the Agency for Healthcare Research and Quality (AHRQ) has developed 20 Patient Safety Indicators (PSIs) to measure the occurrence of hospital adverse events from medico-administrative data coded according to the ninth revision of the international classification of disease (ICD-9-CM). The adaptation of these PSIs to the WHO version of ICD-10 was carried out by an international consortium. METHODS: Two independent teams transcoded ICD-9-CM diagnosis codes proposed by the AHRQ into ICD-10-WHO. Using a Delphi process, experts from six countries evaluated each code independently, stating whether it was "included", "excluded" or "uncertain". During a two-day meeting, the experts then discussed the codes that had not obtained a consensus, and the additional codes proposed. RESULTS: Fifteen PSIs were adapted. Among the 2569 proposed diagnosis codes, 1775 were unanimously adopted straightaway. The 794 remaining codes and 2541 additional codes were discussed. Three documents were prepared: (1) a list of ICD-10-WHO codes for the 15 adapted PSIs; (2) recommendations to the AHRQ for the improvement of the nosological frame and the coding of PSI with ICD-9-CM; (3) recommendations to the WHO to improve ICD-10. CONCLUSIONS: This work allows international comparisons of PSIs among the countries using ICD-10. Nevertheless, these PSIs must still be evaluated further before being broadly used.
Resumo:
An efficient high-resolution (HR) three-dimensional (3D) seismic reflection system for small-scale targets in lacustrine settings was developed. In Lake Geneva, near the city of Lausanne, Switzerland, the offshore extension of a complex fault zone well mapped on land was chosen for testing our system. A preliminary two-dimensional seismic survey indicated structures that include a thin (<40 m) layer of subhorizontal Quaternary sediments that unconformably overlie south-east-dipping Tertiary Molasse beds and a major fault zone (Paudeze Fault Zone) that separates Plateau and Subalpine Molasse (SM) units. A 3D survey was conducted over this test site using a newly developed three-streamer system. It provided high-quality data with a penetration to depths of 300 m below the water bottom of non-aliased signal for dips up to 30degrees and with a maximum vertical resolution of 1.1 m. The data were subjected to a conventional 3D processing sequence that included post-stack time migration. Tests with 3D pre-stack depth migration showed that such techniques can be applied to HR seismic surveys. Delineation of several horizons and fault surfaces reveals the potential for small-scale geologic and tectonic interpretation in three dimensions. Five major seismic facies and their detailed 3D geometries can be distinguished. Three fault surfaces and the top of a molasse surface were mapped in 3D. Analysis of the geometry of these surfaces and their relative orientation suggests that pre-existing structures within the Plateau Molasse (PM) unit influenced later faulting between the Plateau and SM. In particular, a change in strike of the PM bed dip may indicate a fold formed by a regional stress regime, the orientation of which was different from the one responsible for the creation of the Paudeze Fault Zone. This structure might have later influenced the local stress regime and caused the curved shape of the Paudeze Fault in our surveyed area.
Resumo:
Purpose: IOL centration and stability after cataract surgery is of high interest for cataract surgeons and IOL-producing companies. We present a new imaging software to evaluate the centration of the rhexis and the centration of the IOL after cataract surgery.Methods: We developed, in collaboration with the Biomedical Imaging Group (BIG), EPFL, Lausanne, a new working tool in order to assess precisely outcomes after IOL-implantation, such as ideal capsulorhexis and IOL-centration. The software is a plug-in of ImageJ, a general-purpose image processing and image-analysis package. The specifications of this software are: evaluation of the rhexis-centration and evaluation the position of the IOL in the posterior chamber. The end points are to analyze the quality of the centration of a rhexis after cataract surgery, the deformation of the rhexis with capsular bag retraction and the centration of the IOL after implantation.Results: This software delivers tools to interactively measure the distances between limbus, IOL and capsulorhexis and its changes over time. The user is invited to adjust nodes of three radial curves for the limbus, rhexis and the optic of the IOL. The radial distances of the curves are computed to evaluate the IOL implantation. The user is also able to define patterns for ideal capsulorhexis and optimal IOL-centration. We are going to present examples of calculations after cataract surgery.Conclusions: Evaluation of the centration of the rhexis and of the IOL after cataract surgery is an important end point for optimal IOL implantation after cataract surgery. Especially multifocal or accommodative lenses need a precise position in the bag with a good stability over time. This software is able to evaluate these parameters just after the surgery but also its changes over time. The results of these evaluations can lead to an optimizing of surgical procedures and materials.