321 resultados para differential index
Resumo:
The molecular mechanisms regulating the initial uptake of inorganic sulfate in plants are still largely unknown. The current model for the regulation of sulfate uptake and assimilation attributes positive and negative regulatory roles to O-acetyl-serine (O-acetyl-Ser) and glutathione, respectively. This model seems to suffer from exceptions and it has not yet been clearly validated whether intracellular O-acetyl-Ser and glutathione levels have impacts on regulation. The transcript level of the two high-affinity sulfate transporters SULTR1.1 and SULTR1.2 responsible for sulfate uptake from the soil solution was compared to the intracellular contents of O-acetyl-Ser, glutathione, and sulfate in roots of plants submitted to a wide diversity of experimental conditions. SULTR1.1 and SULTR1.2 were differentially expressed and neither of the genes was regulated in accordance with the current model. The SULTR1.1 transcript level was mainly altered in response to the sulfur-related treatments. Split-root experiments show that the expression of SULTR1.1 is locally regulated in response to sulfate starvation. In contrast, accumulation of SULTR1.2 transcripts appeared to be mainly related to metabolic demand and is controlled by photoperiod. On the basis of the new molecular insights provided in this study, we suggest that the expression of the two transporters depends on different regulatory networks. We hypothesize that interplay between SULTR1.1 and SULTR1.2 transporters could be an important mechanism to regulate sulfate content in the roots
Resumo:
Plain radiography remains useful for the diagnosis of osteoarthritis, even if it is not always essential. It is moreover poorly correlated with symptoms, as it reflects rather the accumulation of damage then active processes. Similarly, it is a poor indicator of the progression of osteoarthritis. Modem imaging, particularly MRI, has allowed us to understand better the evolving processes, demonstrating a good correlation with symptoms and a better predictive value of clinical course. It has gradually replaced standard radiography in the study because it directly demonstrates sequelae and the active processes in all the structures of the joint. It remains clinically indicated only to exclude an alternative diagnosis or to determine a possible complication of osteoarthritis.
Resumo:
We prospectively compared the diagnostic value of C-reactive protein (CRP) and white blood cell counts for detection of neonatal septicaemia. Sensitivity and specifity in receiver operating characteristics, and positive and negative predictive value of CRP and white blood cell count were compared in 195 critically ill preterm and term newborns clinically suspected of infection. Blood cultures were positive in 33 cases. During the first 3 days after birth CRP elevation (sensitivity 75%, specifity 86%), leukopenia (67%/90%), neutropenia (78%/80%) and immature to total neutrophil count (I/T) ratio (78%/73%) were good diagnostic parameters, as opposed to band forms with absolute count (84%/66%) or percentage (79%/71%), thrombocytopenia (65%/57%) and toxic granulations (44%/94%). Beyond 3 days of age elevated CRP (88%/87%) was the best parameter. Increased total (84%/66%) or percentage band count (79%/71%) were also useful. Leukocytosis (74%/56%), increased neutrophils (67%/65%), I/T ratio (79%/47%), thrombocytopenia (65%/57%) and toxic granulations had a low specifity. The positive predictive value of CRP was 32% before and 37% after 3 days of age, that of leukopenia was 37% in the first 3 days. CONCLUSION: During the first 3 days of life CRP, leukopenia and neutropenia were comparably good tests while after 3 days of life CRP was the best single test in early detection of neonatal septicaemia. Serial CRP estimations confirm the diagnosis, monitor the course of infection and the efficacy of antibiotic treatment.
Resumo:
Aldosterone stimulation of the mineralocorticoid receptor (MR) is involved in numerous physiological responses, including Na+ homeostasis, blood pressure control, and heart failure. Aldosterone binding to MR promotes different post-translational modifications that regulate MR nuclear translocation, gene expression, and finally receptor degradation. Here, we show that aldosterone stimulates rapid phosphorylation of MR via ERK1/2 in a dose-dependent manner (from 0.1 to 10 nM) in renal epithelial cells. This phosphorylation induces an increase of MR apparent molecular weight, with a maximal upward shift of 30 kDa. Strikingly, these modifications are critical for the regulation of the MR ubiquitylation state. Indeed, we find that MR is monoubiquitylated in its basal state, and this status is sustained by the tumor suppressor gene 101 (Tsg101). Phosphorylation leads to disruption of MR/Tsg101 association and monoubiquitin removal. These events prompt polyubiquitin-dependent destabilization of MR and degradation. Preventing MR phosphorylation by ERK1/2 inhibition or mutation of target serines affects the sequential mechanisms of MR ubiquitylation and inhibits the aldosterone-mediated degradation. Our data provide a novel model of negative feedback of aldosterone signaling, involving sequential phosphorylation, monoubiquitin removal and subsequent polyubiquitylation/degradation of MR.
Resumo:
BACKGROUND: Finding genes that are differentially expressed between conditions is an integral part of understanding the molecular basis of phenotypic variation. In the past decades, DNA microarrays have been used extensively to quantify the abundance of mRNA corresponding to different genes, and more recently high-throughput sequencing of cDNA (RNA-seq) has emerged as a powerful competitor. As the cost of sequencing decreases, it is conceivable that the use of RNA-seq for differential expression analysis will increase rapidly. To exploit the possibilities and address the challenges posed by this relatively new type of data, a number of software packages have been developed especially for differential expression analysis of RNA-seq data. RESULTS: We conducted an extensive comparison of eleven methods for differential expression analysis of RNA-seq data. All methods are freely available within the R framework and take as input a matrix of counts, i.e. the number of reads mapping to each genomic feature of interest in each of a number of samples. We evaluate the methods based on both simulated data and real RNA-seq data. CONCLUSIONS: Very small sample sizes, which are still common in RNA-seq experiments, impose problems for all evaluated methods and any results obtained under such conditions should be interpreted with caution. For larger sample sizes, the methods combining a variance-stabilizing transformation with the 'limma' method for differential expression analysis perform well under many different conditions, as does the nonparametric SAMseq method.
Resumo:
Streptozotocin injection in animals destroys pancreatic beta cells, leading to insulinopenic diabetes. Here, we evaluated the toxic effect of streptozotocin (STZ) in GLUT2(-/-) mice reexpressing either GLUT1 or GLUT2 in their beta cells under the rat insulin promoter (RIPG1 x G2(-/-) and RIPG2 x G2(-/-) mice, respectively). We demonstrated that injection of STZ into RIPG2 x G2(-/-) mice induced hyperglycemia (>20 mM) and an approximately 80% reduction in pancreatic insulin content. In vitro, the viability of RIPG2 x G2(-/-) islets was also strongly reduced. In contrast, STZ did not induce hyperglycemia in RIPG1 x G2(-/-) mice and did not reduce pancreatic insulin content. The viability of in vitro cultured RIPG1 x G2(-/-) islets was also unaffected by STZ. As islets from each type of transgenic mice were functionally indistinguishable, these data strongly support the notion that STZ toxicity toward beta cells depends on the expression of GLUT2.
Resumo:
INTRODUCTION: For decades, clinicians dealing with immunocompromised and critically ill patients have perceived a link between Candida colonization and subsequent infection. However, the pathophysiological progression from colonization to infection was clearly established only through the formal description of the colonization index (CI) in critically ill patients. Unfortunately, the literature reflects intense confusion about the pathophysiology of invasive candidiasis and specific associated risk factors. METHODS: We review the contribution of the CI in the field of Candida infection and its development in the 20 years following its original description in 1994. The development of the CI enabled an improved understanding of the pathogenesis of invasive candidiasis and the use of targeted empirical antifungal therapy in subgroups of patients at increased risk for infection. RESULTS: The recognition of specific characteristics among underlying conditions, such as neutropenia, solid organ transplantation, and surgical and nonsurgical critical illness, has enabled the description of distinct epidemiological patterns in the development of invasive candidiasis. CONCLUSIONS: Despite its limited bedside practicality and before confirmation of potentially more accurate predictors, such as specific biomarkers, the CI remains an important way to characterize the dynamics of colonization, which increases early in patients who develop invasive candidiasis.
Resumo:
Abstract Background. In children, waist-for-height ratio (WHtR) has been proposed to identify subjects at higher risk of cardiovascular diseases. The utility of WHtR to identify children with elevated blood pressure (BP) is unclear. Design. Cross-sectional population-based study of schoolchildren. Methods. Weight, height, waist circumference and BP were measured in all sixth-grade schoolchildren of the canton de Vaud (Switzerland) in 2005/06. WHtR was computed as waist [cm]/height [cm]. Elevated BP was defined according to sex-, age- and height-specific US reference data. The area under the receiver operating characteristic curve (AUC) statistic was computed to compare the ability of body mass index (BMI) z-score and WHtR, alone or in combination, to identify children with elevated BP. Results. 5207 children participated (76% response) [2621 boys, 2586 girls; mean (± SD) age, 12.3 ± 0.5 years; range: 10.1-14.9]. The prevalence of elevated BP was 11%. Mean WHtR was 0.44 ± 0.05 (range: 0.29- 0.77) and 11% had high WHtR (> 0.5). BMI z-score and WHtR were strongly correlated (Spearman correlation coefficient r = 0.76). Both indices were positively associated with elevated BP. AUCs for elevated BP was relatively low for BMI z-score (0.62) or for WHtR (0.62), and was not substantially improved when both indices were considered together (0.63). Conclusions. The ability of BMI z-score or WHtR to identify children aged 10-14 with elevated BP was weak. Adding WHtR did not confer additional discriminative power to BMI alone. These findings do not support the measurement of WHtR in addition to BMI to identify children with elevated BP.
Resumo:
Mouse mammary tumor virus (MMTV) expresses a superantigen (SAg) which plays a critical role in the viral life cycle. We have recently described the new infectious MMTV (SIM) encoding a Vbeta4-specific SAg in mice with a TCR-Vbeta(b) haplotype. We have now compared the SAg activity of this virus in BALB/c mice harboring the TCR-Vbeta(a), TCR-Vbeta(b) or TCR-Vbeta(c) haplotypes which differ by a central deletion in the TCR-Vbeta(a) and TCR-Vbeta(c) locus and by mutations in some of the remaining Vbeta elements. Injection of MMTV (SIM) led to a strong stimulation of Vbeta4+ CD4+ T cells in TCR-Vbeta(b) mice, but only to a weak stimulation of these cells in TCR-Vbeta(a) or TCR-Vbeta(c) mice. A large increase in the percentage of Vbeta10+ cells was observed among CD4+ T cells in mice with the Vbeta(a) or Vbeta(c), but not the Vbeta(b) TCR-Vbeta haplotype. Vbeta10+ cells dominated the response when Vbeta10(a/c) and Vbeta4 subsets were present together. This is the first report of a viral SAg interacting with murine Vbeta10+ cells. Six amino acid differences between Vbeta10(a/c) and Vbeta10(b) could account for the gain of reactivity of Vbeta10(a/c) to the MMTV(SIM) SAg. No mutations were found in the hypervariable region 4 (HV4) of the TCR. Mutations at positions 22 and 28 introduce into Vbeta10(a/c) the same amino acids which are found at these positions in the MMTV(SIM)-reactive Vbeta4. Tridimensional models indicated that these amino acids lie close to HV4 and are likely to be important for the interaction of the SAg with the TCR.
Resumo:
The antidepressant selective serotonin transporter inhibitors (SSRIs) are clinically active after a delay of several weeks. Indeed, the rapid increase of serotonin (5-HT) caused by SSRIs, stimulates the 5-HT1A autoreceptors, which exert a negative feedback on the 5-HT neurotransmission. Only when autoreceptors are desensitized, can SSRIs exert their therapeutic activity. The 5-HT1A receptor antagonist pindolol has been used to accelerate the clinical effects of antidepressant by preventing the negative feedback. Using the a-[11C]methyl-L-tryptophan/positron emission tomography (PET), the goal of the present double-blind, randomized study was to compare the changes in a-[11C]methyl-L-tryptophan trapping, an index of serotonin synthesis, in patients suffering from unipolar depression treated with the SSRI citalopram (20 mg/day) plus placebo versus patients treated with citalopram plus pindol (7.5 mg/day). PET and Hamilton depression rating scale (HDRS-17) were performed at baseline, and after 10 and 24 days of antidepressant treatment. Results show that the combination citalopram plus pindol, compared to citalopram alone shows a more rapid and greater increase of an index of 5-HT synthesis in prefrontal cortex (BA 9). This research is the first human PET study demonstrating that, after 24 days, the combination SSRIs plus pindolol produces a greater increase of the metabolism of serotonin in the prefrontal cortex, an area associated to depressive symptoms.
Resumo:
Rhizobacteria-induced systemic resistance (ISR) and pathogen-induced systemic acquired resistance (SAR) have a broad, yet partly distinct, range of effectiveness against pathogenic microorganisms. Here, we investigated the effectiveness of ISR and SAR in Arabidopsis against the tissue-chewing insects Pieris rapae and Spodoptera exigua. Resistance against insects consists of direct defense, such as the production of toxins and feeding deterrents and indirect defense such as the production of plant volatiles that attract carnivorous enemies of the herbivores. Wind-tunnel experiments revealed that ISR and SAR did not affect herbivore-induced attraction of the parasitic wasp Cotesia rubecula (indirect defense). By contrast, ISR and SAR significantly reduced growth and development of the generalist herbivore S. exigua, although not that of the specialist P. rapae. This enhanced direct defense against S. exigua was associated with potentiated expression of the defense-related genes PDF1.2 and HEL. Expression profiling using a dedicated cDNA microarray revealed four additional, differentially primed genes in microbially induced S. exigua-challenged plants, three of which encode a lipid-transfer protein. Together, these results indicate that microbially induced plants are differentially primed for enhanced insect-responsive gene expression that is associated with increased direct defense against the generalist S. exigua but not against the specialist P. rapae.