185 resultados para allelopathic inhibition
Resumo:
Inhibition of the essential chaperone Hsp90 with drugs causes a global perturbation of protein folding and the depletion of direct substrates of Hsp90, also called clients. Ubiquitination and proteasomal degradation play a key role in cellular stress responses, but the impact of Hsp90 inhibition on the ubiquitinome has not been characterized on a global scale. We used stable isotope labeling and antibody-based peptide enrichment to quantify more than 1500 protein sites modified with a Gly-Gly motif, the remnant of ubiquitination, in human T-cells treated with an Hsp90 inhibitor. We observed rapid changes in GlyGly-modification sites, with strong increases for some Hsp90 clients but also decreases for a majority of cellular proteins. A comparison with changes in total protein levels and protein synthesis and decay rates from a previous study revealed a complex picture with different regulatory patterns observed for different protein families. Overall the data support the notion that for Hsp90 clients GlyGly-modification correlates with targeting by the ubiquitin-proteasome system and decay, while for other proteins levels of GlyGly-modification appear to be mainly influenced by their synthesis rates. Therefore a correct interpretation of changes in ubiquitination requires knowledge of multiple parameters. Data are available via ProteomeXchange with identifier PXD001549. BIOLOGICAL SIGNIFICANCE: Proteostasis, i.e. the capacity of the cell to maintain proper synthesis and maturation of proteins, is a fundamental biological process and its perturbations have far-reaching medical implications e.g. in cancer or neurodegenerative diseases. Hsp90 is an essential chaperone responsible for the correct maturation and stability of a number of key proteins. Inhibition of Hsp90 triggers a global stress response caused by accumulation of misfolded chains, which have to be either refolded or eliminated by protein degradation pathways such as the Ubiquitin-Proteasome System (UPS). We present the first global assessment of the changes in the ubiquitinome, the subset of ubiquitin-modified proteins, following Hsp90 inhibition in human T-cells. The results provide clues on how cells respond to a specific proteostasis challenge. Furthermore, our data also suggest that basal ubiquitination levels for most proteins are influenced by synthesis rates. This has broad significance as it implies that a proper interpretation of data on ubiquitination levels necessitates simultaneous knowledge of other parameters.
Resumo:
Mitogen-activated protein kinases (MAPKs) are key regulators that have been linked to cell survival and death. Among the main classes of MAPKs, c-jun N-terminal kinase (JNK) has been shown to mediate cell stress responses associated with apoptosis. In Vitro, hypoxia induced a significant increase in 661W cell death that paralleled increased activity of JNK and c-jun. 661W cells cultured in presence of the inhibitor of JNK (D-JNKi) were less sensitive to hypoxia-induced cell death. In vivo, elevation in intraocular pressure (IOP) in the rat promoted cell death that correlated with modulation of JNK activation. In vivo inhibition of JNK activation with D-JNKi resulted in a significant and sustained decrease in apoptosis in the ganglion cell layer, the inner nuclear layer and the photoreceptor layer. These results highlight the protective effect of D-JNKi in ischemia/reperfusion induced cell death of the retina.
Resumo:
Venous bypass grafts often fail following arterial implantation due to excessive smooth muscle cells (VSMC) proliferation and consequent intimal hyperplasia (IH). Intercellular communication mediated by Connexins (Cx) regulates differentiation, growth and proliferation in various cell types. Microarray analysis of vein grafts in a model of bilateral rabbit jugular vein graft revealed Cx43 as an early upregulated gene. Additional experiments conducted using an ex-vivo human saphenous veins perfusion system (EVPS) confirmed that Cx43 was rapidly increased in human veins subjected ex-vivo to arterial hemodynamics. Cx43 knock-down by RNA interference, or adenoviral-mediated overexpression, respectively inhibited or stimulated the proliferation of primary human VSMC in vitro. Furthermore, Cx blockade with carbenoxolone or the specific Cx43 inhibitory peptide 43gap26 prevented the burst in myointimal proliferation and IH formation in human saphenous veins. Our data demonstrated that Cx43 controls proliferation and the formation of IH after arterial engraftment.
Resumo:
AIMS: Notch1 signalling in the heart is mainly activated via expression of Jagged1 on the surface of cardiomyocytes. Notch controls cardiomyocyte proliferation and differentiation in the developing heart and regulates cardiac remodelling in the stressed adult heart. Besides canonical Notch receptor activation in signal-receiving cells, Notch ligands can also activate Notch receptor-independent responses in signal-sending cells via release of their intracellular domain. We evaluated therefore the importance of Jagged1 (J1) intracellular domain (ICD)-mediated pathways in the postnatal heart. METHODS AND RESULTS: In cardiomyocytes, Jagged1 releases J1ICD, which then translocates into the nucleus and down-regulates Notch transcriptional activity. To study the importance of J1ICD in cardiac homeostasis, we generated transgenic mice expressing a tamoxifen-inducible form of J1ICD, specifically in cardiomyocytes. Using this model, we demonstrate that J1ICD-mediated Notch inhibition diminishes proliferation in the neonatal cardiomyocyte population and promotes maturation. In the neonatal heart, a response via Wnt and Akt pathway activation is elicited as an attempt to compensate for the deficit in cardiomyocyte number resulting from J1ICD activation. In the stressed adult heart, J1ICD activation results in a dramatic reduction of the number of Notch signalling cardiomyocytes, blunts the hypertrophic response, and reduces the number of apoptotic cardiomyocytes. Consistently, this occurs concomitantly with a significant down-regulation of the phosphorylation of the Akt effectors ribosomal S6 protein (S6) and eukaryotic initiation factor 4E binding protein1 (4EBP1) controlling protein synthesis. CONCLUSIONS: Altogether, these data demonstrate the importance of J1ICD in the modulation of physiological and pathological hypertrophy, and reveal the existence of a novel pathway regulating cardiac homeostasis.
Resumo:
Notch is a membrane inserted protein activated by the membrane-inserted γ-secretase proteolytic complex. The Notch pathway is a potential therapeutic target for the treatment of renal diseases but also controls the function of other cells, requiring cell-targeting of Notch antagonists. Toward selective targeting, we have developed the γ-secretase inhibitor-based prodrugs 13a and 15a as substrates for γ-glutamyltranspeptidase (γ-GT) and/or γ-glutamylcyclotransferase (γ-GCT) as well as aminopeptidase A (APA), which are overexpressed in renal diseases, and have evaluated them in experimental in vitro and in vivo models. In nondiseased mice, the cleavage product from Ac-γ-Glu-γ-secretase inhibitor prodrug 13a (γ-GT-targeting and γ-GCT-targeting) but not from Ac-α-Glu-γ-secretase inhibitor prodrug 15a (APA-targeting) accumulated in kidneys when compared to blood and liver. Potential nephroprotective effects of the γ-secretase inhibitor targeted prodrugs were investigated in vivo in a mouse model of acute kidney injury, demonstrating that the expression of Notch1 and cleaved Notch1 could be selectively down-regulated upon treatment with the Ac-γ-Glu-γ-secretase-inhibitor 13a.
Resumo:
Tumor antigen-specific CD4(+) T cells generally orchestrate and regulate immune cells to provide immune surveillance against malignancy. However, activation of antigen-specific CD4(+) T cells is restricted at local tumor sites where antigen-presenting cells (APCs) are frequently dysfunctional, which can cause rapid exhaustion of anti-tumor immune responses. Herein, we characterize anti-tumor effects of a unique human CD4(+) helper T-cell subset that directly recognizes the cytoplasmic tumor antigen, NY-ESO-1, presented by MHC class II on cancer cells. Upon direct recognition of cancer cells, tumor-recognizing CD4(+) T cells (TR-CD4) potently induced IFN-γ-dependent growth arrest in cancer cells. In addition, direct recognition of cancer cells triggers TR-CD4 to provide help to NY-ESO-1-specific CD8(+) T cells by enhancing cytotoxic activity, and improving viability and proliferation in the absence of APCs. Notably, the TR-CD4 either alone or in collaboration with CD8(+) T cells significantly inhibited tumor growth in vivo in a xenograft model. Finally, retroviral gene-engineering with T cell receptor (TCR) derived from TR-CD4 produced large numbers of functional TR-CD4. These observations provide mechanistic insights into the role of TR-CD4 in tumor immunity, and suggest that approaches to utilize TR-CD4 will augment anti-tumor immune responses for durable therapeutic efficacy in cancer patients.
Resumo:
Nitric oxide (NO) has been shown to exert cytotoxic effects on tumor cells. We have reported that EC219 cells, a rat-brain-microvessel-derived endothelial cell line, produced NO through cytokine-inducible NO synthase (iNOS), the induction of which was significantly decreased by (a) soluble factor(s) secreted by DHD/PROb, an invasive sub-clone of a rat colon-carcinoma cell line. In this study, the DHD/PROb cell-derived NO-inhibitory factor was characterized. Northern-blot analysis demonstrated that the induction of iNOS mRNA in cytokine-activated EC219 cells was decreased by PROb-cell-conditioned medium. When DHD/PROb cell supernatant was fractionated by affinity chromatography using Con A-Sepharose or heparin-Sepharose, the NO-inhibitory activity was found only in Con A-unbound or heparin-unbound fractions, respectively, indicating that the PROb-derived inhibitory factor was likely to be a non-glycosylated and non-heparin-binding molecule. Pre-incubation of DHD/PROb-cell supernatant with anti-TGF-beta neutralizing antibody completely blocked the DHD/PROb-derived inhibition of NO production by EC219 cells. Addition of exogenous TGF-beta 1 dose-dependently inhibited NO release by EC219 cells. The presence of active TGF-beta in the DHD/PROb cell supernatant was demonstrated using a growth-inhibition assay. Moreover, heat treatment of medium conditioned by the less invasive DHD/REGb cells, which constitutively secreted very low levels of active TGF-beta, increased both TGF-beta activity and the ability to inhibit NO production in EC219 cells. Thus, DHD/PROb colon-carcinoma cells inhibited NO production in EC219 cells by secreting a factor identical or very similar to TGF-beta.
Resumo:
The paracaspase MALT1 has a central role in the activation of lymphocytes and other immune cells including myeloid cells, mast cells and NK cells. MALT1 activity is required not only for the immune response, but also for the development of natural Treg cells that keep the immune response in check. Exaggerated MALT1 activity has been associated with the development of lymphoid malignancies, and recently developed MALT1 inhibitors show promising anti-tumor effects in xenograft models of diffuse large B cell lymphoma. In this review, we provide an overview of the present understanding of MALT1's function, and discuss possibilities for its therapeutic targeting based on recently developed inhibitors and animal models.