193 resultados para Water Mouse
Resumo:
With the current enzootic circulation of highly pathogenic avian influenza viruses, the ability to increase global pandemic influenza vaccine production capacity is of paramount importance. This has been highlighted by, and is one of the main pillars of, the WHO Global Action Plan for Influenza Vaccines (GAP). Such capacity expansion is especially relevant in developing countries. The Vaccine Formulation Laboratory at University of Lausanne is engaged in the technology transfer of an antigen-sparing oil-in-water adjuvant in order to empower developing countries vaccine manufacturers to increase pandemic influenza vaccine capacity. In a one-year project funded by United States Department of Health and Human Services, the Vaccine Formulation Laboratory transferred the process know-how and associated equipment for the pilot-scale manufacturing of an oil-in-water adjuvant to Bio Farma, Indonesia's state-owned vaccine manufacturer, for subsequent formulation with H5N1 pandemic influenza vaccines. This paper describes the experience acquired and lessons learnt from this technology transfer project.
Resumo:
Hatching is an important niche shift, and embryos in a wide range of taxa can either accelerate or delay this life-history switch in order to avoid stage-specific risks. Such behavior can occur in response to stress itself and to chemical cues that allow anticipation of stress. We studied the genetic organization of this phenotypic plasticity and tested whether there are differences among populations and across environments in order to learn more about the evolutionary potential of stress-induced hatching. As a study species, we chose the brown trout (Salmo trutta; Salmonidae). Gametes were collected from five natural populations (within one river network) and used for full-factorial in vitro fertilizations. The resulting embryos were either directly infected with Pseudomonas fluorescens or were exposed to waterborne cues from P. fluorescens-infected conspecifics. We found that direct inoculation with P. fluorescens increased embryonic mortality and induced hatching in all host populations. Exposure to waterborne cues revealed population-specific responses. We found significant additive genetic variation for hatching time, and genetic variation in trait plasticity. In conclusion, hatching is induced in response to infection and can be affected by waterborne cues of infection, but populations and families differ in their reaction to the latter.
Resumo:
Mouse mammary tumor virus (MMTV) encodes a superantigen (SAg) that promotes stable infection and virus transmission. Upon subcutaneous MMTV injection, infected B cells present SAg to SAg-reactive T cells leading to a strong local immune response in the draining lymph node (LN) that peaks after 6 d. We have used the reverse transcriptase inhibitor 3'-azido-3'-deoxythymidine (AZT) to dissect in more detail the mechanism of SAg-dependent enhancement of MMTV infection in this system. Our data show that no detectable B or T cell response to SAg occurs in AZT pretreated mice. However, if AZT treatment is delayed 1-2 d after MMTV injection, a normal SAg-dependent local immune response is observed on day 6. Quantitation of viral DNA in draining LN of these infected mice indicates that a 4,000-fold increase in the absolute numbers of infected cells occurs between days 2 and 6 despite the presence of AZT. Furthermore MMTV DNA was found preferentially in surface IgG+ B cells of infected mice and was not detectable in SAg-reactive T cells. Collectively our data suggest that MMTV infection occurs preferentially in B cells without SAg involvement and is completed 1-2 d after virus challenge. Subsequent amplification of MMTV infection between days 2 and 6 requires SAg expression and occurs in the absence of any further requirement for reverse transcription. We therefore conclude that clonal expansion of infected B cells via cognate interaction with SAg-reactive T cells is the predominant mechanism for increasing the level of MMTV infection. Since infected B cells display a memory (surface IgG+) phenotype, both clonal expansion and possibly longevity of the virus carrier cells may contribute to stable MMTV infection.
Resumo:
Infectious mouse mammary tumor virus (MMTV) is a retrovirus that expresses a superantigen shortly after infection of B cells. The superantigen first drives the polyclonal activation and proliferation of superantigen-reactive CD4+ T cells, which then induce the infected B cells to proliferate and differentiate. Part of the MMTV-induced B cell response leads to the production of Abs that are specific for the viral envelope protein gp52. Here we show that this Ab response has virus-neutralizing activity and confers protection against superinfection by other MMTV strains in vivo as soon as 4 to 7 days after infection. A protective Ab titer is maintained lifelong. Viral infection as well as the superantigen-induced T-B collaboration are required to generate this rapid and long lasting neutralizing Ab response. Polyclonal or superantigen-independent B cell activation, on the contrary, does not lead to detectable virus neutralization. The early onset of this superantigen-dependent neutralizing response suggests that viral envelope-specific B cells are selectively recruited to form part of the extrafollicular B cell response and are subsequently amplified and maintained by superantigen-reactive Th cells.
Resumo:
Zeta potential is a physico-chemical parameter of particular importance to describe sorption of contaminants at the surface of gas bubbles. Nevertheless, the interpretation of electrophoretic mobilities of gas bubbles is complex. This is due to the specific behavior of the gas at interface and to the excess of electrical charge at interface, which is responsible for surface conductivity. We developed a surface complexation model based on the presence of negative surface sites because the balance of accepting and donating hydrogen bonds is broken at interface. By considering protons adsorbed on these sites followed by a diffuse layer, the electrical potential at the head-end of the diffuse layer is computed and considered to be equal to the zeta potential. The predicted zeta potential values are in very good agreement with the experimental data of H-2 bubbles for a broad range of pH and NaCl concentrations. This implies that the shear plane is located at the head-end of the diffuse layer, contradicting the assumption of the presence of a stagnant diffuse layer at the gas/water interface. Our model also successfully predicts the surface tension of air bubbles in a KCl solution. (c) 2012 Elsevier Inc. All rights reserved.
Resumo:
Structural definition of the receptors for neurotropic and angiogenic modulators such as fibroblast growth factors and related polypeptides will yield insight into the mechanisms that control early development, embryogenesis, organogenesis, wound repair and neovessel formation. We isolated 3 murine cDNAs encoding different binding domains of these receptors (flg). Comparison of these ectoplasmic portions showed that two of the forms corresponded to previously described murine molecules whereas the third one had a different ectoplasmic portion generated by specific changes in two regions. Interestingly, expression of this third form seems to be restricted in its tissue distribution. Such modifications could influence the ligand specificity of the different receptors and/or their binding affinity.
Resumo:
Superantigens (SAgs) are proteins of microbial origin that bind to major histocompatibility complex (MHC) class II molecules and stimulate T cells via interaction with the V beta domain of the T cell receptor (TCR). Mouse mammary tumor virus (MMTV) is a milk-transmitted type B retrovirus that encodes a SAg in its 3' long terminal repeat. Upon MMTV infection, B cells present SAg to the appropriate T cell subset, which leads to a strong "cognate" T-B interaction. This immune reaction results in preferential clonal expansion of infected B cells and differentiation of some of these cells into long-lived memory cells. In this way a stable MMTV infection is achieved that ultimately results in infection of the mammary gland and virus transmission via milk. Thus, in contrast to many microorganisms that attempt to evade the host immune system (reviewed in 1), MMTV depends upon a strong SAg-induced immune response for its survival. Because of their ability to stimulate very strong T cell responses in MHC-identical mice, minor lymphocyte stimulatory (Mls) antigens, discovered more than 20 years ago, are now known to be SAgs encoded by endogenous MMTV proviruses that have randomly integrated into germ cells. The aim of this review is to combine the extensive biology of Mls SAgs with our current understanding of the life cycle of MMTV.
Resumo:
Cyclosporine A (CsA) has been demonstrated to be effective for the treatment of a variety of ophthalmological conditions, including ocular surface disorders such as the dry eye disease (DED). Since CsA is characterised by its low water solubility, the development of a topical ophthalmic formulation represents an interesting pharmaceutical question. In the present study, two different strategies to address this challenge were studied and compared: (i) a water-soluble CsA prodrug formulated within an aqueous solution and (ii) a CsA oil-in-water emulsion (Restasis, Allergan Inc., Irvine, CA). First, the prodrug formulation was shown to have an excellent ocular tolerance as well as no influence on the basal tear production; maintaining the ocular surface properties remained unchanged. Then, in order to allow in vivo investigations, a specific analytical method based on ultra high pressure liquid chromatography coupled with triple quadrupole mass spectrometer (UHPLC-MS/MS) was developed and optimised to quantify CsA in ocular tissues and fluids. The CsA ocular kinetics in lachrymal fluid for both formulations were found to be similar between 15 min and 48 h. The CsA ocular distribution study evidenced the ability of the prodrug formulation to penetrate into the eye, achieving therapeutically active CsA levels in tissues of both the anterior and posterior segments. In addition, the detailed analysis of the in vivo data using a bicompartmental model pointed out a higher bioavailability and lower elimination rate for CsA when it is generated from the prodrug than after direct application as an emulsion. The interesting in vivo properties displayed by the prodrug solution make it a safe and suitable option for the treatment of DED.
Resumo:
PURPOSE: Quantification of myocardial blood flow (MBF) with generator-produced (82)Rb is an attractive alternative for centres without an on-site cyclotron. Our aim was to validate (82)Rb-measured MBF in relation to that measured using (15)O-water, as a tracer 100% of which can be extracted from the circulation even at high flow rates, in healthy control subject and patients with mild coronary artery disease (CAD). METHODS: MBF was measured at rest and during adenosine-induced hyperaemia with (82)Rb and (15)O-water PET in 33 participants (22 control subjects, aged 30 ± 13 years; 11 CAD patients without transmural infarction, aged 60 ± 13 years). A one-tissue compartment (82)Rb model with ventricular spillover correction was used. The (82)Rb flow-dependent extraction rate was derived from (15)O-water measurements in a subset of 11 control subjects. Myocardial flow reserve (MFR) was defined as the hyperaemic/rest MBF. Pearson's correlation r, Bland-Altman 95% limits of agreement (LoA), and Lin's concordance correlation ρ (c) (measuring both precision and accuracy) were used. RESULTS: Over the entire MBF range (0.66-4.7 ml/min/g), concordance was excellent for MBF (r = 0.90, [(82)Rb-(15)O-water] mean difference ± SD = 0.04 ± 0.66 ml/min/g, LoA = -1.26 to 1.33 ml/min/g, ρ(c) = 0.88) and MFR (range 1.79-5.81, r = 0.83, mean difference = 0.14 ± 0.58, LoA = -0.99 to 1.28, ρ(c) = 0.82). Hyperaemic MBF was reduced in CAD patients compared with the subset of 11 control subjects (2.53 ± 0.74 vs. 3.62 ± 0.68 ml/min/g, p = 0.002, for (15)O-water; 2.53 ± 1.01 vs. 3.82 ± 1.21 ml/min/g, p = 0.013, for (82)Rb) and this was paralleled by a lower MFR (2.65 ± 0.62 vs. 3.79 ± 0.98, p = 0.004, for (15)O-water; 2.85 ± 0.91 vs. 3.88 ± 0.91, p = 0.012, for (82)Rb). Myocardial perfusion was homogeneous in 1,114 of 1,122 segments (99.3%) and there were no differences in MBF among the coronary artery territories (p > 0.31). CONCLUSION: Quantification of MBF with (82)Rb with a newly derived correction for the nonlinear extraction function was validated against MBF measured using (15)O-water in control subjects and patients with mild CAD, where it was found to be accurate at high flow rates. (82)Rb-derived MBF estimates seem robust for clinical research, advancing a step further towards its implementation in clinical routine.
Resumo:
Water inflows in the Gotthard Highway Tunnel and in the Gotthard Exploration Tunnel are meteoric waters infiltrating at different elevations, on both sides of an important orographic divide. Limited interaction of meteoric waters with gneissic rocks produces Ca-HCO3 and Na-Ca-HCO3 waters, whereas prolonged interaction of meteoric waters with the same rocks generates Na-HCO3 to Na-SO4 waters. Waters circulating in Triassic carbonate-evaporite rocks have a Ca-SO4 composition. Calcium-Na-SO4 waters are also present. They can be produced through interaction of either Na-HCO3 waters with anhydrite or Ca-SO4 waters with a local gneissic rock, as suggested by reaction path modeling. An analogous simulation indicates that Na-HCO3 waters are generated through interaction of Ca-HCO3 waters with a local gneissic rock. The two main SO4-sources present in the Alps are leaching of upper Triassic sulfate minerals and oxidative dissolution of sulfide minerals of crystalline rocks. Values of delta S-34(SO4) < <similar to>+ 9 parts per thousand, are due to oxidative dissolution of sulfide minerals, whereas delta S-34(SO4) > similar to+ 9 parts per thousand are controlled either by bacterial SO4 reduction or leaching of upper Triassic sulfate minerals. Most waters have temperatures similar to the expected values for a geothermal gradient of 22 degreesC/km and are close to thermal equilibrium with rocks. However relatively large, descending flows of cold waters and ascending flows of warm waters are present in both tunnels and determine substantial cooling and heating, respectively, of the interacting rocks. The most import upflow zone of warm, Na-rich waters is below Guspisbach, in the Gotthard Highway Tunnel, at 6.2-9.0 km from the southern portal. These warm waters have equilibrium temperatures of 65-75 degreesC and therefore constitute an important low-enthalpy geothermal resource. (C) 2001 Elsevier Science Ltd. All rights reserved.
Resumo:
PURPOSE: To improve fat saturation in coronary MRA at 3T by using a spectrally selective adiabatic T2 -Prep (WSA-T2 -Prep). METHODS: A conventional adiabatic T2 -Prep (CA-T2 -Prep) was modified, such that the excitation and restoration pulses were of differing bandwidths. On-resonance spins are T2 -Prepared, whereas off-resonance spins, such as fat, are spoiled. This approach was combined with a CHEmically Selective Saturation (CHESS) pulse to achieve even greater fat suppression. Numerical simulations were followed by phantom validation and in vivo coronary MRA. RESULTS: Numerical simulations demonstrated that augmenting a CHESS pulse with a WSA-T2 -Prep improved robustness to B1 inhomogeneities and that this combined fat suppression was effective over a broader spectral range than that of a CHESS pulse in a conventional T2 -Prepared sequence. Phantom studies also demonstrated that the WSA-T2 -Prep+CHESS combination produced greater fat suppression across a range of B1 values than did a CA-T2 -Prep+CHESS combination. Lastly, in vivo measurements demonstrated that the contrast-to-noise ratio between blood and myocardium was not adversely affected by using a WSA-T2 -Prep, despite the improved abdominal and epicardial fat suppression. Additionally, vessel sharpness improved. CONCLUSION: The proposed WSA-T2 -Prep method was shown to improve fat suppression and vessel sharpness as compared to a CA-T2 -Prep technique, and to also increase fat suppression when combined with a CHESS pulse.
Resumo:
Barrels are discrete cytoarchitectonic neurons cluster located in the layer IV of the somatosensory¦cortex in mice brain. Each barrel is related to a specific whisker located on the mouse snout. The¦whisker-to-barrel pathway is a part of the somatosensory system that is intensively used to explore¦sensory activation induced plasticity in the cerebral cortex.¦Different recording methods exist to explore the cortical response induced by whisker deflection in¦the cortex of anesthetized mice. In this work, we used a method called the Single-Unit Analysis by¦which we recorded the extracellular electric signals of a single barrel neuron using a microelectrode.¦After recording the signal was processed by discriminators to isolate specific neuronal shape (action¦potentials).¦The objective of this thesis was to familiarize with the barrel cortex recording during whisker¦deflection and its theoretical background and to compare two different ways of discriminating and¦sorting cortical signal, the Waveform Window Discriminator (WWD) or the Spike Shape Discriminator (SSD).¦WWD is an electric module allowing the selection of specific electric signal shape. A trigger and a¦window potential level are set manually. During measurements, every time the electric signal passes¦through the two levels a dot is generated on time line. It was the method used in previous¦extracellular recording study in the Département de Biologie Cellulaire et de Morphologie (DBCM) in¦Lausanne.¦SSD is a function provided by the signal analysis software Spike2 (Cambridge Electronic Design). The¦neuronal signal is discriminated by a complex algorithm allowing the creation of specific templates.¦Each of these templates is supposed to correspond to a cell response profile. The templates are saved¦as a number of points (62 in this study) and are set for each new cortical location. During¦measurements, every time the cortical recorded signal corresponds to a defined number of templates¦points (60% in this study) a dot is generated on time line. The advantage of the SSD is that multiple¦templates can be used during a single stimulation, allowing a simultaneous recording of multiple¦signals.¦It exists different ways to represent data after discrimination and sorting. The most commonly used¦in the Single-Unit Analysis of the barrel cortex are the representation of the time between stimulation¦and the first cell response (the latency), the representation of the Response Magnitude (RM) after¦whisker deflection corrected for spontaneous activity and the representation of the time distribution¦of neuronal spikes on time axis after whisker stimulation (Peri-Stimulus Time Histogram, PSTH).¦The results show that the RMs and the latencies in layer IV were significantly different between the¦WWD and the SSD discriminated signal. The temporal distribution of the latencies shows that the¦different values were included between 6 and 60ms with no peak value for SSD while the WWD¦data were all gathered around a peak of 11ms (corresponding to previous studies). The scattered¦distribution of the latencies recorded with the SSD did not correspond to a cell response.¦The SSD appears to be a powerful tool for signal sorting but we do not succeed to use it for the¦Single-Unit Analysis extracellular recordings. Further recordings with different SSD templates settings¦and larger sample size may help to show the utility of this tool in Single-Unit Analysis studies.