201 resultados para WHITE-MATTER HYPERINTENSITIES
Sex-specific selective pressures on body mass in the greater white-toothed shrew, Crocidura russula.
Resumo:
The direction, intensity and shape of viability-, sexual- and fecundity selection on body mass were investigated in a natural population of the greater white-toothed shrew (Crocidura russula), combining parentage assignment through molecular techniques and mark-recapture data over several generations. A highly significant stabilizing viability selection was found in both sexes, presumably stemming from the constraints imposed by their insectivorous habits and high metabolic costs. Sexual selection, directional in both sexes, was twice as large in males than in females. Our results suggest that body mass matters in this context by facilitating the acquisition and defense of a breeding territory. No fecundity selection could be detected. The direction of sexual size dimorphism (SSD) was in agreement with the observed pattern of selective pressures: males were heavier than females, because of stronger sexual selection. SSD intensity, however, was low compared with other mammals, because of the low level of polygyny, the active role of females in territory defense and the intensity of stabilizing viability selection.
Arterial properties in relation to genetic variations in the adducin subunits in a white population.
Resumo:
BACKGROUND: Adducin is a membrane skeleton protein, which consists of either alpha- and beta- or alpha- and gamma-subunits. We investigated whether arterial characteristics might be related to the genes encoding ADD1 (Gly460Trp-rs4961), ADD2 (C1797T-rs4984), and ADD3 (IVS11+386A>G-rs3731566). METHODS: We randomly recruited 1,126 Flemish subjects (mean age, 43.8 years; 50.3% women). Using a wall-tracking ultrasound system, we measured the properties of the carotid, femoral, and brachial arteries. We studied multivariate-adjusted phenotype-genotype associations, using a population- and family-based approach. RESULTS: In single-gene analyses, brachial diameter was 0.15 mm (P = 0.0022) larger, and brachial distensibility and cross-sectional compliance were 1.55 x 10(-3)/kPa (P = 0.013) and 0.017 mm(2)/kPa (P = 0.0029) lower in ADD3 AA than ADD3 GG homozygotes with an additive effect of the G allele. In multiple-gene analyses, the association of brachial diameter and distensibility with the ADD3 G allele occurred only in ADD1 GlyGly homozygotes. Otherwise, the associations between the arterial phenotypes in the three vascular beds and the ADD1 or ADD2 polymorphisms were not significant. In family-based analyses, the multivariate-adjusted heritability was 0.52, 0.38, and 0.30 for brachial diameter, distensibility, and cross-sectional compliance, respectively (P < 0.001). There was no evidence for population stratification (0.07 < or = P < or = 0.96). Transmission of the mutated ADD3 G allele was associated with smaller brachial diameter in 342 informative offspring (-0.12 +/- 0.04 mm; P = 0.0085) and in 209 offspring, who were ADD1 GlyGly homozygotes (-0.14 +/- 0.06 mm; P = 0.018). CONCLUSIONS: In ADD1 GlyGly homozygotes, the properties of the brachial artery are related to the ADD3 (A386G) polymorphism, but the underlying mechanism needs further clarification.
Resumo:
Dominant groups have claimed to be the targets of discrimination on several historical occasions during violent intergroup conflict and genocide.The authors argue that perceptions of ethnic victimization among members of dominant groups express social dominance motives and thus may be recruited for the enforcement of group hierarchy. They examine the antecedents of perceived ethnic victimization among dominants, following 561 college students over 3 years from freshman year to graduation year. Using longitudinal, cross-lagged structural equation modeling, the authors show that social dominance orientation (SDO) positively predicts perceived ethnic victimization among Whites but not among Latinos, whereas victimization does not predict SDO over time. In contrast, ethnic identity and victimization reciprocally predicted each other longitudinally with equal strength among White and Latino students. SDO is not merely a reflection of contextualized social identity concerns but a psychological, relational motivation that undergirds intergroup attitudes across extended periods of time and interacts with the context of group dominance.
Resumo:
OBJECTIVE: Mild neurocognitive disorders (MND) affect a subset of HIV+ patients under effective combination antiretroviral therapy (cART). In this study, we used an innovative multi-contrast magnetic resonance imaging (MRI) approach at high-field to assess the presence of micro-structural brain alterations in MND+ patients. METHODS: We enrolled 17 MND+ and 19 MND- patients with undetectable HIV-1 RNA and 19 healthy controls (HC). MRI acquisitions at 3T included: MP2RAGE for T1 relaxation times, Magnetization Transfer (MT), T2* and Susceptibility Weighted Imaging (SWI) to probe micro-structural integrity and iron deposition in the brain. Statistical analysis used permutation-based tests and correction for family-wise error rate. Multiple regression analysis was performed between MRI data and (i) neuropsychological results (ii) HIV infection characteristics. A linear discriminant analysis (LDA) based on MRI data was performed between MND+ and MND- patients and cross-validated with a leave-one-out test. RESULTS: Our data revealed loss of structural integrity and micro-oedema in MND+ compared to HC in the global white and cortical gray matter, as well as in the thalamus and basal ganglia. Multiple regression analysis showed a significant influence of sub-cortical nuclei alterations on the executive index of MND+ patients (p = 0.04 he and R(2) = 95.2). The LDA distinguished MND+ and MND- patients with a classification quality of 73% after cross-validation. CONCLUSION: Our study shows micro-structural brain tissue alterations in MND+ patients under effective therapy and suggests that multi-contrast MRI at high field is a powerful approach to discriminate between HIV+ patients on cART with and without mild neurocognitive deficits.
Resumo:
Skin, arteries and nerves of the upper extremities can be affected by vibration exposure. Recent advances in skin and vascular biology as well as new investigative methods, have shown that neurovascular symptoms may be due to different vascular and neurological disorders which should be differentiated if proper management is to be evaluated. Three types of vascular disorder can be observed in the vibration white finger: digital organic microangiopathy, a digital vasospastic phenomenon and arterial thrombosis in the upper extremities. An imbalance between endothelin-1 and calcitonin-gene-related peptide is probably responsible for the vasospastic phenomenon. Moreover, paresthesiae can be due to either a diffuse vibration neuropathy or a carpal tunnel syndrome. A precise diagnosis is then necessary to adapt the treatment to individual cases. A classification describing the type and severity of the vascular lesions is presented. Asymptomatic lesions are included for adequate epidemiological studies and risk assessment of vibrating tools. Monitoring of vibration exposed workers should include not only a questionnaire about symptoms, but also a clinical evaluation including diagnostic tests for the screening of early asymptomatic neurovascular injuries.
Resumo:
Due to advances in neonatal intensive care over the last decades, the pattern of brain injury seen in very preterm infants has evolved in more subtle lesions that are still essential to diagnose in regard to neurodevelopmental outcome. While cranial ultrasound is still used at the bedside, magnetic resonance imaging (MRI) is becoming increasingly used in this population for the assessment of brain maturation and white and grey matter lesions. Therefore, MRI provides a better prognostic value for the neurodevelopmental outcome of these preterms. Furthermore, the development of new MRI techniques, such as diffusion tensor imaging, resting state functional connectivity and magnetic resonance spectroscopy, may further increase the prognostic value, helping to counsel parents and allocate early intervention services.
Resumo:
After decades of management reforms in the public sector, questions on the impact of leader-ship behavior in public organizations have been attracting increasing attention. This paper investigates the relationship between transformational leadership behavior and organizational citizenship behavior as one major extra-role outcome of transformational leadership. Refer-ring to a growing body of research that shows the importance of public service values and employee identification in public administration research, we include public service motiva-tion and organizational goal clarification as mediating variables in our analysis. Structural equation modeling is applied as the method of analysis for a sample of 569 public managers at the local level of Switzerland. The findings of our study support the assumed indirect relation-ship between leadership and employee behavior and emphasize the relevance of public ser-vice values when analyzing leadership behavior in public sector organizations.
Resumo:
Using optimized voxel-based morphometry, we performed grey matter density analyses on 59 age-, sex- and intelligence-matched young adults with three distinct, progressive levels of musical training intensity or expertise. Structural brain adaptations in musicians have been repeatedly demonstrated in areas involved in auditory perception and motor skills. However, musical activities are not confined to auditory perception and motor performance, but are entangled with higher-order cognitive processes. In consequence, neuronal systems involved in such higher-order processing may also be shaped by experience-driven plasticity. We modelled expertise as a three-level regressor to study possible linear relationships of expertise with grey matter density. The key finding of this study resides in a functional dissimilarity between areas exhibiting increase versus decrease of grey matter as a function of musical expertise. Grey matter density increased with expertise in areas known for their involvement in higher-order cognitive processing: right fusiform gyrus (visual pattern recognition), right mid orbital gyrus (tonal sensitivity), left inferior frontal gyrus (syntactic processing, executive function, working memory), left intraparietal sulcus (visuo-motor coordination) and bilateral posterior cerebellar Crus II (executive function, working memory) and in auditory processing: left Heschl's gyrus. Conversely, grey matter density decreased with expertise in bilateral perirolandic and striatal areas that are related to sensorimotor function, possibly reflecting high automation of motor skills. Moreover, a multiple regression analysis evidenced that grey matter density in the right mid orbital area and the inferior frontal gyrus predicted accuracy in detecting fine-grained incongruities in tonal music.
Resumo:
Activation of the peroxisome proliferator-activated receptor (PPAR)-alpha increases lipid catabolism and lowers the concentration of circulating lipid, but its role in the control of glucose metabolism is not as clearly established. Here we compared PPARalpha knockout mice with wild type and confirmed that the former developed hypoglycemia during fasting. This was associated with only a slight increase in insulin sensitivity but a dramatic increase in whole-body and adipose tissue glucose use rates in the fasting state. The white sc and visceral fat depots were larger due to an increase in the size and number of adipocytes, and their level of GLUT4 expression was higher and no longer regulated by the fed-to-fast transition. To evaluate whether these adipocyte deregulations were secondary to the absence of PPARalpha from liver, we reexpresssed this transcription factor in the liver of knockout mice using recombinant adenoviruses. Whereas more than 90% of the hepatocytes were infected and PPARalpha expression was restored to normal levels, the whole-body glucose use rate remained elevated. Next, to evaluate whether brain PPARalpha could affect glucose homeostasis, we activated brain PPARalpha in wild-type mice by infusing WY14643 into the lateral ventricle and showed that whole-body glucose use was reduced. Hence, our data show that PPARalpha is involved in the regulation of glucose homeostasis, insulin sensitivity, fat accumulation, and adipose tissue glucose use by a mechanism that does not require PPARalpha expression in the liver. By contrast, activation of PPARalpha in the brain stimulates peripheral glucose use. This suggests that the alteration in adipocyte glucose metabolism in the knockout mice may result from the absence of PPARalpha in the brain.
Resumo:
Y chromosome variation is determined by several confounding factors including mutation rate, effective population size, demography, and selection. Disentangling these factors is essential to better understand the evolutionary properties of the Y chromosome. We analyzed genetic variation on the Y chromosome, X chromosome, and mtDNA of the greater white-toothed shrew, a species with low variance in male reproductive success and limited sex-biased dispersal, which enables us to control to some extent for life-history effects. We also compared ancestral (Moroccan) to derived (European) populations to investigate the role of demographic history in determining Y variation. Recent colonization of Europe by a small number of founders (combined with low mutation rates) is largely responsible for low diversity observed on the European Y and X chromosomes compared to mtDNA. After accounting for mutation rate, copy number, and demography, the Y chromosome still displays a deficit in variation relative to the X in both populations. This is possibly influenced by directional selection, but the slightly higher variance in male reproductive success is also likely to play a role, even though the difference is small compared to that in highly polygynous species. This study illustrates that demography and life-history effects should be scrutinized before inferring strong selective pressure as a reason for low diversity on the Y chromosome.
Resumo:
Through analysis of mice with spatially and temporally restricted inactivation of Lpin1, we characterized its cell autonomous function in both white (WAT) and brown (BAT) adipocyte development and maintenance. We observed that the lipin 1 inactivation in adipocytes of aP2(Cre/+)/Lp(fEx2)(-)(3/fEx2)(-)(3) mice resulted in lipodystrophy and the presence of adipocytes with multilocular lipid droplets. We further showed that time-specific loss of lipin 1 in mature adipocytes in aP2(Cre-ERT2/+)/Lp(fEx2)(-)(3/fEx2)(-)(3) mice led to their replacement by newly formed Lpin1-positive adipocytes, thus establishing a role for lipin 1 in mature adipocyte maintenance. Importantly, we observed that the presence of newly formed Lpin1-positive adipocytes in aP2(Cre-ERT2/+)/Lp(fEx2)(-)(3/fEx2)(-)(3) mice protected these animals against WAT inflammation and hepatic steatosis induced by a high-fat diet. Loss of lipin 1 also affected BAT development and function, as revealed by histological changes, defects in the expression of peroxisome proliferator-activated receptor alpha (PPARα), PGC-1α, and UCP1, and functionally by altered cold sensitivity. Finally, our data indicate that phosphatidic acid, which accumulates in WAT of animals lacking lipin 1 function, specifically inhibits differentiation of preadipocytes. Together, these observations firmly demonstrate a cell autonomous role of lipin 1 in WAT and BAT biology and indicate its potential as a therapeutical target for the treatment of obesity.