171 resultados para Visual communication
Resumo:
In swarm robotics, communication among the robots is essential. Inspired by biological swarms using pheromones, we propose the use of chemical compounds to realize group foraging behavior in robot swarms. We designed a fully autonomous robot, and then created a swarm using ethanol as the trail pheromone allowing the robots to communicate with one another indirectly via pheromone trails. Our group recruitment and cooperative transport algorithms provide the robots with the required swarm behavior. We conducted both simulations and experiments with real robot swarms, and analyzed the data statistically to investigate any changes caused by pheromone communication in the performance of the swarm in solving foraging recruitment and cooperative transport tasks. The results show that the robots can communicate using pheromone trails, and that the improvement due to pheromone communication may be non-linear, depending on the size of the robot swarm.
Resumo:
Question: When multiple observers record the same spatial units of alpine vegetation, how much variation is there in the records and what are the consequences of this variation for monitoring schemes to detect change? Location: One test summit in Switzerland (Alps) and one test summit in Scotland (Cairngorm Mountains). Method: Eight observers used the GLORIA protocols for species composition and visual cover estimates in percent on large summit sections (>100 m2) and species composition and frequency in nested quadrats (1 m2). Results: The multiple records from the same spatial unit for species composition and species cover showed considerable variation in the two countries. Estimates of pseudoturnover of composition and coefficients of variation of cover estimates for vascular plant species in 1m x 1m quadrats showed less variation than in previously published reports whereas our results in larger sections were broadly in line with previous reports. In Scotland, estimates for bryophytes and lichens were more variable than for vascular plants. Conclusions: Statistical power calculations indicated that, unless large numbers of plots were used, changes in cover or frequency were only likely to be detected for abundant species (exceeding 10% cover) or if relative changes were large (50% or more). Lower variation could be reached with the point methods and with larger numbers of small plots. However, as summits often strongly differ from each other, supplementary summits cannot be considered as a way of increasing statistical power without introducing a supplementary component of variance into the analysis and hence the power calculations.
Resumo:
Feelings of invulnerability, seen in judgments of 0% risk, can reflect misunderstandings of risk and risk behaviors, suggesting increased need for risk communication. However, judgments of 0% risk may be given by individuals who feel invulnerable, and by individuals who are rounding from small non-zero probabilities. We examined the effect of allowing participants to give more precise responses in the 0-1% range on the validity of reported probability judgments. Participants assessed probabilities for getting H1N1 influenza and dying from it conditional on infection, using a 0-100% visual linear scale. Those responding in the 0-1% range received a follow-up question with more options in that range. This two-step procedure reduced the use of 0% and increased the resolution of responses in the 0-1% range. Moreover, revised probability responses improved predictions of attitudes and self-reported behaviors. Hence, our two-step procedure allows for more precise and more valid measurement of perceived invulnerability. [Authors]