221 resultados para Supercritical Fluid Chromatography
Resumo:
The general strategy to perform anti-doping analyses of urine samples starts with the screening for a wide range of compounds. This step should be fast, generic and able to detect any sample that may contain a prohibited substance while avoiding false negatives and reducing false positive results. The experiments presented in this work were based on ultra-high-pressure liquid chromatography coupled to hybrid quadrupole time-of-flight mass spectrometry. Thanks to the high sensitivity of the method, urine samples could be diluted 2-fold prior to injection. One hundred and three forbidden substances from various classes (such as stimulants, diuretics, narcotics, anti-estrogens) were analysed on a C(18) reversed-phase column in two gradients of 9min (including two 3min equilibration periods) for positive and negative electrospray ionisation and detected in the MS full scan mode. The automatic identification of analytes was based on retention time and mass accuracy, with an automated tool for peak picking. The method was validated according to the International Standard for Laboratories described in the World Anti-Doping Code and was selective enough to comply with the World Anti-Doping Agency recommendations. In addition, the matrix effect on MS response was measured on all investigated analytes spiked in urine samples. The limits of detection ranged from 1 to 500ng/mL, allowing the identification of all tested compounds in urine. When a sample was reported positive during the screening, a fast additional pre-confirmatory step was performed to reduce the number of confirmatory analyses.
Resumo:
A simple method determining airborne monoethanolamine has been developed. Monoethanolamine determination has traditionally been difficult due to analytical separation problems. Even in recent sophisticated methods, this difficulty remains as the major issue often resulting in time-consuming sample preparations. Impregnated glass fiber filters were used for sampling. Desorption of monoethanolamine was followed by capillary GC analysis and nitrogen phosphorous selective detection. Separation was achieved using a specific column for monoethanolamines (35% diphenyl and 65% dimethyl polysiloxane). The internal standard was quinoline. Derivatization steps were not needed. The calibration range was 0.5-80 μg/mL with a good correlation (R(2) = 0.996). Averaged overall precisions and accuracies were 4.8% and -7.8% for intraday (n = 30), and 10.5% and -5.9% for interday (n = 72). Mean recovery from spiked filters was 92.8% for the intraday variation, and 94.1% for the interday variation. Monoethanolamine on stored spiked filters was stable for at least 4 weeks at 5°C. This newly developed method was used among professional cleaners and air concentrations (n = 4) were 0.42 and 0.17 mg/m(3) for personal and 0.23 and 0.43 mg/m(3) for stationary measurements. The monoethanolamine air concentration method described here was simple, sensitive, and convenient both in terms of sampling and analytical analysis.
Resumo:
Ethyl glucuronide (EtG) is a minor and direct metabolite of ethanol. EtG is incorporated into the growing hair allowing retrospective investigation of chronic alcohol abuse. In this study, we report the development and the validation of a method using gas chromatography-negative chemical ionization tandem mass spectrometry (GC-NCI-MS/MS) for the quantification of EtG in hair. EtG was extracted from about 30 mg of hair by aqueous incubation and purified by solid-phase extraction (SPE) using mixed mode extraction cartridges followed by derivation with perfluoropentanoic anhydride (PFPA). The analysis was performed in the selected reaction monitoring (SRM) mode using the transitions m/z 347-->163 (for the quantification) and m/z 347-->119 (for the identification) for EtG, and m/z 352-->163 for EtG-d(5) used as internal standard. For validation, we prepared quality controls (QC) using hair samples taken post mortem from 2 subjects with a known history of alcoholism. These samples were confirmed by a proficiency test with 7 participating laboratories. The assay linearity of EtG was confirmed over the range from 8.4 to 259.4 pg/mg hair, with a coefficient of determination (r(2)) above 0.999. The limit of detection (LOD) was estimated with 3.0 pg/mg. The lower limit of quantification (LLOQ) of the method was fixed at 8.4 pg/mg. Repeatability and intermediate precision (relative standard deviation, RSD%), tested at 4 QC levels, were less than 13.2%. The analytical method was applied to several hair samples obtained from autopsy cases with a history of alcoholism and/or lesions caused by alcohol. EtG concentrations in hair ranged from 60 to 820 pg/mg hair.
Resumo:
Propane can be responsible for several types of lethal intoxication and explosions. Quantifying it would be very helpful to determine in some cases the cause of death. Some gas chromatography-mass spectrometry (GC-MS) methods of propane measurements do already exist. The main drawback of these GC-MS methods described in the literature is the absence of a specific propane internal standard necessary for accurate quantitative analysis. The main outcome of the following study was to provide an innovative Headspace-GC-MS method (HS-GC-MS) applicable to the routine determination of propane concentration in forensic toxicology laboratories. To date, no stable isotope of propane is commercially available. The development of an in situ generation of standards is thus presented. An internal-labeled standard gas (C3DH7) is generated in situ by the stoichiometric formation of propane by the reaction of deuterated water (D2O) with Grignard reagent propylmagnesium chloride (C3H7MgCl). The method aims to use this internal standard to quantify propane concentrations and, therefore, to obtain precise measurements. Consequently, a complete validation with an accuracy profile according to two different guidelines, the French Society of Pharmaceutical Sciences and Techniques (SFSTP) and the Gesellschaft für toxikologische und Forensische Chemie (GTFCh), is presented.
Resumo:
OBJECTIVES: The diagnosis of pheochromocytoma relies on the measurement of plasma free metanephrines assay whose reliability has been considerably improved by ultra-high pressure liquid chromatography tandem mass spectrometry (UHPLC-MS/MS). Here we report an analytical interference occurring between 4-hydroxy-3-methoxymethamphetamine (HMMA), a metabolite of 3,4-methylenedioxymethamphetamine (MDMA, "Ecstasy"), and normetanephrine (NMN) since they share a common pharmacophore resulting in the same product ion after fragmentation. DESIGN AND METHODS: Synthetic HMMA was spiked into plasma samples containing various concentrations of NMN and the intensity of the interference was determined by UPLC-MS/MS before and after improvement of the analytical method. RESULTS: Using a careful adjustment of chromatographic conditions including the change of the UPLC analytical column, we were able to distinguish both compounds. HMMA interference for NMN determination should be seriously considered since MDMA activates the sympathetic nervous system and if confounded with NMN may lead to false-positive tests when performing a differential diagnostic of pheochromocytoma.
Resumo:
Raman spectroscopy has been used by fluid inclusionists to: 1) identify and quantitatively determine the relative abundances of gaseous species within fluid inclusions; 2) identify solid phases precipitating from, or accidentally trapped, within fluid inclusions; and 3) determine the detection limits of the C-13/C-12 ratio in the CO2 bearing phase of fluid inclusions.
Resumo:
Mississippi Tialley-type zinc-lead deposits and ore occurrences in the San Vicente belt are hosted in dolostones of the eastern Upper Triassic to Lower Jurassic Pucara basin, central Peru. Combined inorganic and organic geochemical data from 22 sites, including the main San Vicente deposit, minor ore occurrences, and barren localities, provide better understanding of fluid pathways and composition, ore precipitation mechanisms, Eh-pH changes during mineralization, and relationships between organic matter and ore formation. Ore-stage dark replacement dolomite and white sparry dolomite are Fe and rare earth element (REE) depleted, and Mn enriched, compared to the host dolomite. In the main deposit, they display significant negative Ce and probably Eu anomalies. Mixing of an incoming hot, slightly oxidizing, acidic brine (H2CO3 being the dominant dissolved carbon species), probably poor in REE and Fe, with local intraformational, alkaline, reducing waters explains the overall carbon and oxygen isotope variation and the distributions of REE and other trace elements in the different hydrothermal carbonate generations. The incoming ore fluid flowed through major aquifers, probably basal basin detrital units, with limited interaction with the carbonate host rocks. The hydrothermal carbonates show a strong regional chemical homogeneity, indicating access of the ore fluids by interconnected channelways near the ore occurrences. Negative Ce anomalies in the main deposit, that are absent at the district scale, indicate local ore-fluid chemical differences. Oxidation of both migrated and indigenous hydrocarbons by the incoming fluid provided the local reducing conditions necessary for sulfate reduction to H2S, pyrobitumen precipitation, and reduction of Eu3+ to Eu2+. Fe-Mn covariations, combined with the REE contents of the hydrothermal carbonates, are consistent with the mineralizing system shifting from reducing/rock-dominated to oxidizing/fluid-dominated conditions following ore deposition. Sulfate and sulfide sulfur isotopes support sulfide origin from evaporite-derived sulfate by thermochemical organic reduction; further evidence includes the presence of C-13-depleted calcite cements (similar to-12 parts per thousand delta(13)C) as sulfate pseudomorphs, elemental sulfur, altered organic matter in the host dolomite, and isotopically heavier, late, solid bitumen. Significant alteration of the indigenous and extrinsic hydrocarbons, with absent bacterial membrane biomarkers (hopanes) is observed. The light delta(34)S of sulfides from small mines and occurrences compared to the main deposit reflect a local contribution of isotopically light sulfur, evidence of local differences in the ore-fluid chemistry.
Resumo:
Plasma and cerebrospinal fluid (CSF) concentrations of the enantiomers of citalopram (CIT), its N-demethylated metabolite demethylcitalopram (DCIT) and its deaminated metabolite citalopram propionic acid derivative (CIT-PROP) were measured in plasma and CSF in 22 depressed patients after a 4-week treatment with 40 mg/d citalopram, which was preceded by a 1-week washout period. CSF 5-hydroxyindoleacetic acid (5-HIAA) and homovanillic acid (HVA) were measured at baseline and after the 4-week CIT medication period. Patients were assessed clinically, using the Hamilton Depression Rating Scale (21-item HAM-D): at baseline and then at weekly intervals. CSF concentrations of S-CIT and R-CIT were 10.6 +/- 4.3 and 20.9 +/- 6 ng/mL, respectively, and their CSF/plasma ratios were 52% +/- 9% and 48% +/- 6%, respectively. The CIT treatment resulted in a significant decrease (28%) of 5-HIAA (P < 0.0001) and a significant increase (41%) of HVA in the CSF. Multiple linear regression analyses were performed to identify the impact of plasma and CSF CIT enantiomers and its metabolites on CSF monoamine metabolites and clinical response. There were 10 responders as defined by a > or =50% decrease of the HAM-D score (DeltaHAM-D) after the 4-week treatment. DeltaHAM-D correlated (Spearman) significantly with CSF S-CIT (r = - 0.483, P < 0.05), CSF S-CIT-PROP (r = -0.543, P = 0.01) (a metabolite formed from CIT by monoamine oxidase [MAO]) and 5-HIAA decrease (Delta5-HIAA) (r = 0.572, P = 0.01). The demonstrated correlations between pharmacokinetic parameters and the clinical outcome as well as 5-HIAA changes indicate that monitoring of plasma S-CIT, CSF S-CIT and CSF S-CIT-PROP may be of clinical relevance.
Resumo:
Bovine secretory IgA (SIgA), recently identified in colostrum, was shown to be homologous to human SIgA by immunologic cross-reaction. A quantitative study indicated that bovine SIgA, a minor component of colostrum, is a major immunoglobulin in most other external secretions including saliva, spermatic fluid, lacrimal, nasal and gastrointestinal secretions. SIgA was isolated from saliva. The free form of secretory component was found to be abundant in milk. A normal lactating cow produces about 1.2 g of this protein per day. Two forms of IgA were identified in serum: a normal serum IgA with no secretory antigenic determinant, and a small amount of SIgA. In vitro synthesis of SIgA by the salivary gland was studied by tissue cultures with incorporation of labeled amino acids.
Resumo:
The delta(18)O, delta(13)C and Sr-87/Sr-86 values of calcite and organic matter were measured for carbonate mylonites from numerous thrusts in the Helvetic Alps. Carbonate mylonites in most of the thrusts retain essentially unaltered protolith delta(18)O and delta(13)C values, consistent with there having been little to no advection of isotopically distinct fluid through these faults. Only carbonate mylonites from the basal thrusts of the largest nappes have delta(18)O and/or delta(13)C values that differ from those of their protoliths. The zone of isotopic alteration/exchange is confined to c. 10 to 20 meters of these fault contacts. We propose the fluids that migrated through these faults contained variable amounts of organically derived carbon and radiogenic strontium, and were probably derived from dewatering of the sedimentary rocks and prograde metamorphic reactions in the nappes' root zones. Apart from the basal thrusts of the largest nappes that behaved as narrow, laterally extensive conduits for fluids, there is little isotopic evidence that large quantities of fluids passed through most of the carbonate-hosted thrusts in the Helvetic Alps.
Resumo:
Recent studies show that the composition of fingerprint residue varies significantly from the same donor as well as between donors. This variability is a major drawback in latent print dating issues. This study aimed, therefore, at the definition of a parameter that is less variable from print to print, using a ratio of peak area of a target compound degrading over time divided by the summed area of peaks of more stable compounds also found in latent print residues.Gas chromatography-mass spectrometry (GC/MS) analysis of the initial lipid composition of latent prints identifies four main classes of compounds that can be used in the definition of an aging parameter: fatty acids, sterols, sterol precursors, and wax esters (WEs). Although the entities composing the first three groups are quite well known, those composing WEs are poorly reported. Therefore, the first step of the present work was to identify WE compounds present in latent print residues deposited by different donors. Of 29 WEs recorded in the chromatograms, seven were observed in the majority of samples.The identified WE compounds were subsequently used in the definition of ratios in combination with squalene and cholesterol to reduce the variability of the initial composition between latent print residues from different persons and more particularly from the same person. Finally, the influence of a latent print enhancement process on the initial composition was studied by analyzing traces after treatment with magnetic powder, 1,2-indanedione, and cyanoacrylate.
Resumo:
Plasma catecholamines provide a reliable biomarker of sympathetic activity. The low circulating concentrations of catecholamines and analytical interferences require tedious sample preparation and long chromatographic runs to ensure their accurate quantification by HPLC with electrochemical detection. Published or commercially available methods relying on solid phase extraction technology lack sensitivity or require derivatization of catecholamine by hazardous reagents prior to tandem mass spectrometry (MS) analysis. Here, we manufactured a novel 96-well microplate device specifically designed to extract plasma catecholamines prior to their quantification by a new and highly sensitive ultraperformance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) method. Processing time, which included sample purification on activated aluminum oxide and elution, is less than 1 h per 96-well microplate. The UPLC-MS/MS analysis run time is 2.0 min per sample. This UPLC-MS/MS method does not require a derivatization step, reduces the turnaround time by 10-fold compared to conventional methods used for routine application, and allows catecholamine quantification in reduced plasma sample volumes (50-250 μL, e.g., from children and mice).
Resumo:
β-hydroxybutyrate concentrations were determined in blood and synovial fluid in a series of medico-legal cases including hypothermia fatalities, individuals found dead in a cold environment and non-hypothermia cases with various, non-traumatic causes of death. Hypothermia was considered to be the cause of death according to circumstantial elements indicating exposure to cold, autopsy findings, biochemical investigation results and exclusion of other causes of death. The intention of this study was to characterize β-hydroxybutyrate distribution in synovial fluid and assess its usefulness for the postmortem diagnosis of antemortem abnormalities in blood β-hydroxybutyrate levels. Unenhanced CT scans, autopsies, histology, neuropathology, toxicology, and biochemistry were systematically performed. Within the limited number of subjects included in the study, the results indicate that abnormalities in antemortem β-hydroxybutyrate blood levels, as may be observed in hypothermia fatalities, are reflected in postmortem synovial fluid values. These preliminary findings notwithstanding, synovial fluid analysis to determine β-hydroxybutyrate is unlikely to be generally applied due to the more invasive collection technique it requires and could be limited to special cases in which biological fluids systematically collected upon autopsy are unavailable.
Resumo:
In this report, we confirm our previous findings of increased concentrations of soluble amyloid-β protein precursor (sAβPP) in cerebrospinal fluid (CSF) of patients with Alzheimer's disease (AD) and mild cognitive impairment (MCI) in a large cohort of patients (n = 314), not overlapping with those of our previous study, and we extend our observations by including a control group of participants with normal cognition. In addition, we investigate the effects of age, the APOEε4 genotype, and the blood-CSF barrier function on the concentrations of sAβPPα and sAβPPβ. The study participants were categorized according to clinical-neuropsychological criteria, supported by CSF neurochemical dementia diagnostics (NDD) analyses. sAβPPα concentrations in the AD group (132.0 ± 44.8) were significantly higher than in the control group (105.3 ± 37.3, p < 0.0005) but did not differ from the MCI-AD group (138.5 ± 39.5, p = 0.91). The MCI-AD group differed significantly from the MCI-O (97.3 ± 34.3, p < 0.05) group. There was no difference between the control and the MCI-O groups (p = 0.94). Similarly, sAβPPβ concentrations in the AD group (160.2 ± 54.3) were significantly higher than in the control group (129.9 ± 44.6, p < 0.005) but did not differ from the MCI-AD group (184.0 ± 56.4, p = 0.20). The MCI-AD group differed significantly from the MCI-O (127.8 ± 46.2, p < 0.05) group. There was no difference between the control and the MCI-O groups (p > 0.99). We observed highly significant correlation of the two sAβPP forms. Age and the CSF-serum albumin ratio were significant albeit weak predictors of the sAβPPα and sAβPPβ concentrations, while carrying the APOEε4 allele did not influenced the levels of the sAβPP forms. Taken together, the results strongly suggest that CSF sAβPP concentrations may be considered as an extension of already available NDD tools.