181 resultados para Structural composite
Resumo:
PURPOSE: To investigate the visual acuity results of eyes with neovascular age-related macular degeneration and refractory fluid despite monthly treatment with ranibizumab, and to investigate differences between refractory subretinal fluid and intraretinal cystic changes. METHODS: Retrospective chart review of consecutive treatment-refractory neovascular age-related macular degeneration, defined as persistent intraretinal or subretinal fluid despite monthly ranibizumab injections during 12 months or more. Data were evaluated for baseline characteristics, type and location of the refractory fluid, mean visual acuity change, number of injections, and the time point of first complete disappearance of all fluid on spectral domain optical coherence tomography. RESULTS: Seventy-six eyes (74 patients, mean age, 76.8 years) were identified. The mean follow-up was 33.6 months (range, 12-73 months). The mean number of injections was 11.4 in the first year and 27.7 over follow-up. The refractory fluid was located subfoveally in 61.8%. In 27 eyes (35.5%), the fluid resolved after a mean of 21.8 months (range, 13-49 months). Mean visual acuity increased by 9.0, 7.9, and 7.9 letters by Month 12, Month 24, and Month 36, respectively. Subgroup analysis revealed a higher risk for fibrosis (odds ratio, 3.30) or atrophy (odds ratio, 3.34) in patients with refractory cysts as compared with refractory subretinal fluid. Furthermore, refractory cysts showed a higher risk for a 10-letter visual acuity loss (P = 0.018). CONCLUSION: Fluid refractory to monthly treatment with ranibizumab for neovascular age-related macular degeneration still allowed for well-maintained visual improvement, even in subfoveal location. Late fluid resolution may occur. However, refractory cysts were associated with poorer anatomical and functional outcome than subretinal fluid.
Resumo:
Huntington's disease is an incurable neurodegenerative disease caused by inheritance of an expanded cytosine-adenine-guanine (CAG) trinucleotide repeat within the Huntingtin gene. Extensive volume loss and altered diffusion metrics in the basal ganglia, cortex and white matter are seen when patients with Huntington's disease (HD) undergo structural imaging, suggesting that changes in basal ganglia-cortical structural connectivity occur. The aims of this study were to characterise altered patterns of basal ganglia-cortical structural connectivity with high anatomical precision in premanifest and early manifest HD, and to identify associations between structural connectivity and genetic or clinical markers of HD. 3-Tesla diffusion tensor magnetic resonance images were acquired from 14 early manifest HD subjects, 17 premanifest HD subjects and 18 controls. Voxel-based analyses of probabilistic tractography were used to quantify basal ganglia-cortical structural connections. Canonical variate analysis was used to demonstrate disease-associated patterns of altered connectivity and to test for associations between connectivity and genetic and clinical markers of HD; this is the first study in which such analyses have been used. Widespread changes were seen in basal ganglia-cortical structural connectivity in early manifest HD subjects; this has relevance for development of therapies targeting the striatum. Premanifest HD subjects had a pattern of connectivity more similar to that of controls, suggesting progressive change in connections over time. Associations between structural connectivity patterns and motor and cognitive markers of disease severity were present in early manifest subjects. Our data suggest the clinical phenotype in manifest HD may be at least partly a result of altered connectivity. Hum Brain Mapp 36:1728-1740, 2015. © 2015 Wiley Periodicals, Inc.
Resumo:
The epidermis on leaves protects plants from pathogen invasion and provides a waterproof barrier. It consists of a layer of cells that is surrounded by thick cell walls, which are partially impregnated by highly hydrophobic cuticular components. We show that the Arabidopsis T-DNA insertion mutants of REDUCED WALL ACETYLATION 2 (rwa2), previously identified as having reduced O-acetylation of both pectins and hemicelluloses, exhibit pleiotrophic phenotype on the leaf surface. The cuticle layer appeared diffused and was significantly thicker and underneath cell wall layer was interspersed with electron-dense deposits. A large number of trichomes were collapsed and surface permeability of the leaves was enhanced in rwa2 as compared to the wild type. A massive reprogramming of the transcriptome was observed in rwa2 as compared to the wild type, including a coordinated up-regulation of genes involved in responses to abiotic stress, particularly detoxification of reactive oxygen species and defense against microbial pathogens (e.g., lipid transfer proteins, peroxidases). In accordance, peroxidase activities were found to be elevated in rwa2 as compared to the wild type. These results indicate that cell wall acetylation is essential for maintaining the structural integrity of leaf epidermis, and that reduction of cell wall acetylation leads to global stress responses in Arabidopsis.
Resumo:
The effects of dark-induced stress on the evolution of the soluble metabolites present in senescent soybean (Glycine max L.) nodules were analysed in vitro using C-13- and P-31-NMR spectroscopy. Sucrose and trehalose were the predominant soluble storage carbons. During dark-induced stress, a decline in sugars and some key glycolytic metabolites was observed. Whereas 84% of the sucrose disappeared, only one-half of the trehalose was utilised. This decline coincides with the depletion of Gln, Asn, Ala and with an accumulation of ureides, which reflect a huge reduction of the N-2 fixation. Concomitantly, phosphodiesters and compounds like P-choline, a good marker of membrane phospholipids hydrolysis and cell autophagy, accumulated in the nodules. An autophagic process was confirmed by the decrease in cell fatty acid content. In addition, a slight increase in unsaturated fatty acids (oleic and linoleic acids) was observed, probably as a response to peroxidation reactions. Electron microscopy analysis revealed that, despite membranes dismantling, most of the bacteroids seem to be structurally intact. Taken together, our results show that the carbohydrate starvation induced in soybean by dark stress triggers a profound metabolic and structural rearrangement in the infected cells of soybean nodule which is representative of symbiotic cessation.
Resumo:
Imaging in neuroscience, clinical research and pharmaceutical trials often employs the 3D magnetisation-prepared rapid gradient-echo (MPRAGE) sequence to obtain structural T1-weighted images with high spatial resolution of the human brain. Typical research and clinical routine MPRAGE protocols with ~1mm isotropic resolution require data acquisition time in the range of 5-10min and often use only moderate two-fold acceleration factor for parallel imaging. Recent advances in MRI hardware and acquisition methodology promise improved leverage of the MR signal and more benign artefact properties in particular when employing increased acceleration factors in clinical routine and research. In this study, we examined four variants of a four-fold-accelerated MPRAGE protocol (2D-GRAPPA, CAIPIRINHA, CAIPIRINHA elliptical, and segmented MPRAGE) and compared clinical readings, basic image quality metrics (SNR, CNR), and automated brain tissue segmentation for morphological assessments of brain structures. The results were benchmarked against a widely-used two-fold-accelerated 3T ADNI MPRAGE protocol that served as reference in this study. 22 healthy subjects (age=20-44yrs.) were imaged with all MPRAGE variants in a single session. An experienced reader rated all images of clinically useful image quality. CAIPIRINHA MPRAGE scans were perceived on average to be of identical value for reading as the reference ADNI-2 protocol. SNR and CNR measurements exhibited the theoretically expected performance at the four-fold acceleration. The results of this study demonstrate that the four-fold accelerated protocols introduce systematic biases in the segmentation results of some brain structures compared to the reference ADNI-2 protocol. Furthermore, results suggest that the increased noise levels in the accelerated protocols play an important role in introducing these biases, at least under the present study conditions.
Resumo:
Extreme prematurity and pregnancy conditions leading to intrauterine growth restriction (IUGR) affect thousands of newborns every year and increase their risk for poor higher order cognitive and social skills at school age. However, little is known about the brain structural basis of these disabilities. To compare the structural integrity of neural circuits between prematurely born controls and children born extreme preterm (EP) or with IUGR at school age, long-ranging and short-ranging connections were noninvasively mapped across cortical hemispheres by connection matrices derived from diffusion tensor tractography. Brain connectivity was modeled along fiber bundles connecting 83 brain regions by a weighted characterization of structural connectivity (SC). EP and IUGR subjects, when compared with controls, had decreased fractional anisotropy-weighted SC (FAw-SC) of cortico-basal ganglia-thalamo-cortical loop connections while cortico-cortical association connections showed both decreased and increased FAw-SC. FAw-SC strength of these connections was associated with poorer socio-cognitive performance in both EP and IUGR children.
Resumo:
Ample evidence indicates that inhibitory control (IC), a key executive component referring to the ability to suppress cognitive or motor processes, relies on a right-lateralized fronto-basal brain network. However, whether and how IC can be improved with training and the underlying neuroplastic mechanisms remains largely unresolved. We used functional and structural magnetic resonance imaging to measure the effects of 2 weeks of training with a Go/NoGo task specifically designed to improve frontal top-down IC mechanisms. The training-induced behavioral improvements were accompanied by a decrease in neural activity to inhibition trials within the right pars opercularis and triangularis, and in the left pars orbitalis of the inferior frontal gyri. Analyses of changes in brain anatomy induced by the IC training revealed increases in grey matter volume in the right pars orbitalis and modulations of white matter microstructure in the right pars triangularis. The task-specificity of the effects of training was confirmed by an absence of change in neural activity to a control working memory task. Our combined anatomical and functional findings indicate that differential patterns of functional and structural plasticity between and within inferior frontal gyri enhanced the speed of top-down inhibition processes and in turn IC proficiency. The results suggest that training-based interventions might help overcoming the anatomic and functional deficits of inferior frontal gyri manifesting in inhibition-related clinical conditions. More generally, we demonstrate how multimodal neuroimaging investigations of training-induced neuroplasticity enable revealing novel anatomo-functional dissociations within frontal executive brain networks. Hum Brain Mapp 36:2527-2543, 2015. © 2015 Wiley Periodicals, Inc.
Resumo:
This thesis focuses on the social-psychological factors that help coping with structural disadvantage, and specifically on the role of cohesive ingroups and the sense of connectedness and efficacy they entail in this process. It aims to complement existing group-based models of coping that are grounded in a categorization perspective to groups and consequently focus exclusively on the large-scale categories made salient in intergroup contexts of comparisons. The dissertation accomplishes this aim through a reconsideration of between-persons relational interdependence as a sufficient and independent antecedent of a sense of groupness, and the benefits that a sense of group connectedness in one's direct environment, regardless of the categorical or relational basis of groupness, might have in the everyday struggles of disadvantaged group members. The three empirical papers aim to validate this approach, outlined in the first theoretical introduction, by testing derived hypotheses. They are based on data collected with youth populations (15-30) from three institutions in French-speaking Switzerland within the context of a larger project on youth transitions. Methods of data collection are paper-pencil questionnaires and in-depth interviews with a selected sub-sample of participants. The key argument of the first paper is that members of socially disadvantaged categories face higher barriers to their life project and that a general sense of connectedness, either based on categorical identities or other proximal groups and relations, mitigates the feeling of powerlessness associated with this experience. The second paper develops and tests a model that defines individual needs satisfaction as antecedent of self-group bonds and the efficacy beliefs derived from these intragroup bonds as the mechanism underlining the role of ingroups in coping. The third paper highlights the complexities that might be associated with the construction of a sense of groupness directly from intergroup comparisons and categorization-based disadvantage, and points out a more subtle understanding of the processes underling the emergence of groupness out of the situation of structural disadvantage. Overall, the findings confirm the central role of ingroups in coping with structural disadvantage and the importance of an understanding of groupness and its role that goes beyond the dominant focus on intergroup contexts and categorization processes.
Resumo:
Six of 7 FXYD proteins have been shown to be tissue-specific modulators of Na,K-ATPase. In this study, we have identified two splice variants of human FXYD3, or Mat-8, in CaCo-2 cells. Short human FXYD3 has 72% sequence identity with mouse FXYD3, whereas long human FXYD3 is identical to short human FXYD3 but has a 26-amino acid insertion after the transmembrane domain. Short and long human FXYD3 RNAs and proteins are differentially expressed during differentiation of CaCo-2 cells. Long human FXYD3 is mainly expressed in nondifferentiated cells and short human FXYD3 in differentiated cells and both FXYD3 variants can be co-immunoprecipitated with a Na,K-ATPase antibody. In contrast to mouse FXYD3, which has two transmembrane domains for lack of cleavage of the signal peptide, human FXYD3 has a cleavable signal peptide and adopts a type I topology. After co-expression in Xenopus oocytes, both human FXYD3 variants associate stably only with Na,K-ATPase isozymes but not with H,K-ATPase or Ca-ATPase. Similar to mouse FXYD3, short human FXYD3 decreases the apparent K(+) and Na(+) affinity of Na,K-ATPase over a large range of membrane potentials. On the other hand, long human FXYD3 decreases the apparent K(+) affinity only at slightly negative and positive membrane potentials and increases the apparent Na(+) affinity of Na,K-ATPase. Finally, both short and long human FXYD3 induce a hyperpolarization activated current, similar to that induced by mouse FXYD3. Thus, we have characterized two human FXYD3 isoforms that are differentially expressed in differentiated and non-differentiated cells and show different functional properties.
Resumo:
Chromosome 22q11.2 deletion syndrome (22q11DS) is a genetic disease known to lead to cerebral structural alterations, which we study using the framework of the macroscopic white-matter connectome. We create weighted connectomes of 44 patients with 22q11DS and 44 healthy controls using diffusion tensor magnetic resonance imaging, and perform a weighted graph theoretical analysis. After confirming global network integration deficits in 22q11DS (previously identified using binary connectomes), we identify the spatial distribution of regions responsible for global deficits. Next, we further characterize the dysconnectivity of the deficient regions in terms of sub-network properties, and investigate their relevance with respect to clinical profiles. We define the subset of regions with decreased nodal integration (evaluated using the closeness centrality measure) as the affected core (A-core) of the 22q11DS structural connectome. A-core regions are broadly bilaterally symmetric and consist of numerous network hubs - chiefly parietal and frontal cortical, as well as subcortical regions. Using a simulated lesion approach, we demonstrate that these core regions and their connections are particularly important to efficient network communication. Moreover, these regions are generally densely connected, but less so in 22q11DS. These specific disturbances are associated to a rerouting of shortest network paths that circumvent the A-core in 22q11DS, "de-centralizing" the network. Finally, the efficiency and mean connectivity strength of an orbito-frontal/cingulate circuit, included in the affected regions, correlate negatively with the extent of negative symptoms in 22q11DS patients, revealing the clinical relevance of present findings. The identified A-core overlaps numerous regions previously identified as affected in 22q11DS as well as in schizophrenia, which approximately 30-40% of 22q11DS patients develop.