315 resultados para Stress indicators
Resumo:
Toxicokinetic modeling is a useful tool to describe or predict the behavior of a chemical agent in the human or animal organism. A general model based on four compartments was developed in a previous study in order to quantify the effect of human variability on a wide range of biological exposure indicators. The aim of this study was to adapt this existing general toxicokinetic model to three organic solvents, which were methyl ethyl ketone, 1-methoxy-2-propanol and 1,1,1,-trichloroethane, and to take into account sex differences. We assessed in a previous human volunteer study the impact of sex on different biomarkers of exposure corresponding to the three organic solvents mentioned above. Results from that study suggested that not only physiological differences between men and women but also differences due to sex hormones levels could influence the toxicokinetics of the solvents. In fact the use of hormonal contraceptive had an effect on the urinary levels of several biomarkers, suggesting that exogenous sex hormones could influence CYP2E1 enzyme activity. These experimental data were used to calibrate the toxicokinetic models developed in this study. Our results showed that it was possible to use an existing general toxicokinetic model for other compounds. In fact, most of the simulation results showed good agreement with the experimental data obtained for the studied solvents, with a percentage of model predictions that lies within the 95% confidence interval varying from 44.4 to 90%. Results pointed out that for same exposure conditions, men and women can show important differences in urinary levels of biological indicators of exposure. Moreover, when running the models by simulating industrial working conditions, these differences could even be more pronounced. In conclusion, a general and simple toxicokinetic model, adapted for three well known organic solvents, allowed us to show that metabolic parameters can have an important impact on the urinary levels of the corresponding biomarkers. These observations give evidence of an interindividual variablity, an aspect that should have its place in the approaches for setting limits of occupational exposure.
Resumo:
OBJECTIVE: Clinical indicators are increasingly used to assess safety of patient care. In obstetrics, only a few indicators have been validated to date and none is used across specialties. The purpose of this study was to identify and assess for face and content validity a group of safety indicators that could be used by anaesthetists, obstetricians and neonatologists involved in labour and delivery units. MATERIALS AND METHODS: We first conducted a systematic review of the literature to identify potential measures. Indicators were then validated by a panel of 30 experts representing all specialties working in labour and delivery units. We used the Delphi method, an iterative questionnaire-based consensus seeking technique. Experts determined on a 7-point Likert scale (1=most representative/7=less representative) the soundness of each indicator as a measure of safety and their possible association with errors and complications caused by medical management. RESULTS: We identified 44 potential clinical indicators from the literature. Following the Delphi process, 13 indicators were considered as highly representative of safety during obstetrical care (mean score</=2.3). Experts ranked 6 of these indicators as being strongly associated to potential errors and complications. CONCLUSIONS: We identified and validated for face and content, a group of six clinical indicators to measure potentially preventable iatrogenic complications in labour and delivery units.
Resumo:
Chemical pollution is known to affect microbial community composition but it is poorly understood how toxic compounds influence physiology of single cells that may lay at the basis of loss of reproductive fitness. Here we analyze physiological disturbances of a variety of chemical pollutants at single cell level using the bacterium Pseudomonas fluorescens in an oligotrophic growth assay. As a proxy for physiological disturbance we measured changes in geometric mean ethidium bromide (EB) fluorescence intensities in subpopulations of live and dividing cells exposed or not exposed to different dosages of tetradecane, 4-chlorophenol, 2-chlorobiphenyl, naphthalene, benzene, mercury chloride, or water-dissolved oil fractions. Because ethidium bromide efflux is an energy-dependent process any disturbance in cellular energy generation is visible as an increased cytoplasmic fluorescence. Interestingly, all pollutants even at the lowest dosage of 1 nmol/mL culture produced significantly increased ethidium bromide fluorescence compared to nonexposed controls. Ethidium bromide fluorescence intensities increased upon pollutant exposure dosage up to a saturation level, and were weakly (r(2) = 0.3905) inversely correlated to the proportion of live cells at that time point in culture. Temporal increase in EB fluorescence of growing cells is indicative for toxic but reversible effects. Cells displaying high continued EB fluorescence levels experience constant and permanent damage, and no longer contribute to population growth. The procedure developed here using bacterial ethidium bromide efflux pump activity may be a useful complement to screen sublethal toxicity effects of chemicals.
Resumo:
Birds exhibit exceptional longevity and are thus regarded as a convenient model to study the intrinsic mechanisms of aging. The oxidative stress theory of aging suggests that individuals age because molecules, cells, tissues, organs, and, ultimately, animals accumulate oxidative damage over time. Accumulation of damage progressively reduces the level of antioxidant defences that are expected to decline with age. To test this theory, we measured the resistance of red blood cells to free radical attack in a captive population of greater flamingo (Phoenicopterus ruber roseus) of known age ranging from 0.3 to 45 years. We observed a convex relationship with young adults (12-20 years old) having greater resistance to oxidative stress than immature flamingos (5 months old) and old flamingos (30-45 years old). Our results suggest that the antioxidant detoxifying system must go through a maturation process before being completely functional. It then declines in older adults, supporting the oxidative theory of aging. Oxidative stress could hence play a significant role in shaping the pattern of senescence in a very long-lived bird species.
Resumo:
Members of the genus Sphingomonas are important catalysts for removal of polycyclic aromatic hydrocarbons (PAHs) in soil, but their activity can be affected by various stress factors. This study examines the physiological and genome-wide transcription response of the phenanthrene-degrading Sphingomonas sp. strain LH128 in biofilms to solute stress (invoked by 450 mM NaCl solution), either as an acute (4-h) or a chronic (3-day) exposure. The degree of membrane fatty acid saturation was increased as a response to chronic stress. Oxygen consumption in the biofilms and phenanthrene mineralization activities of biofilm cells were, however, not significantly affected after imposing either acute or chronic stress. This finding was in agreement with the transcriptomic data, since genes involved in PAH degradation were not differentially expressed in stressed conditions compared to nonstressed conditions. The transcriptomic data suggest that LH128 adapts to NaCl stress by (i) increasing the expression of genes coping with osmolytic and ionic stress such as biosynthesis of compatible solutes and regulation of ion homeostasis, (ii) increasing the expression of genes involved in general stress response, (iii) changing the expression of general and specific regulatory functions, and (iv) decreasing the expression of protein synthesis such as proteins involved in motility. Differences in gene expression between cells under acute and chronic stress suggest that LH128 goes through changes in genome-wide expression to fully adapt to NaCl stress, without significantly changing phenanthrene degrading activity.
Resumo:
Many inflammatory and infectious diseases are characterized by the activation of signaling pathways steaming from the endoplasmic reticulum (ER). These pathways, primarily associated with loss of ER homeostasis, are emerging as key regulators of inflammation and infection. Recent advances shed light on the mechanisms linking ER-stress and immune responses.
Resumo:
Different types of NPs (nanoparticles) are currently under development for diagnostic and therapeutic applications in the biomedical field, yet our knowledge about their possible effects and fate in living cells is still limited. In the present study, we examined the cellular response of human brain-derived endothelial cells to NPs of different size and structure: uncoated and oleic acid-coated iron oxide NPs (8-9 nm core), fluorescent 25 and 50 nm silica NPs, TiO2 NPs (21 nm mean core diameter) and PLGA [poly(lactic-co-glycolic acid)]-PEO [poly(ethylene oxide)] polymeric NPs (150 nm). We evaluated their uptake by the cells, and their localization, generation of oxidative stress and DNA-damaging effects in exposed cells. We show that NPs are internalized by human brain-derived endothelial cells; however, the extent of their intracellular uptake is dependent on the characteristics of the NPs. After their uptake by human brain-derived endothelial cells NPs are transported into the lysosomes of these cells, where they enhance the activation of lysosomal proteases. In brain-derived endothelial cells, NPs induce the production of an oxidative stress after exposure to iron oxide and TiO2 NPs, which is correlated with an increase in DNA strand breaks and defensive mechanisms that ultimately induce an autophagy process in the cells.
Resumo:
Objective: There is little evidence regarding the benefit of stress ulcer prophylaxis (SUP) outside critical care setting. Over-prescription of SUP is not devoid of risks. This prospective study aimed to evaluate the use of proton pump inhibitors (PPIs) for SUP in a general surgery department.Methods: Data collection was performed prospectively during an 8-week period on patients hospitalized in a general surgery department (58 beds) by pharmacists. Patients with a PPI prescription for the treatment of ulcers, gastro-oesophageal reflux disease, oesophagitis or epigastric pain were excluded. Patients admitted twice during the study period were not re-included. The American Society of Health-System Pharmacists guidelines on SUP were used to assess the appropriateness of de novo PPI prescriptions.Results: Among 255 consecutive patients in the study, 138 (54%) received a prophylaxis with PPI, of which 86 (62%) were de novo PPI prescriptions. One-hundred twenty-nine patients (94%) received esomeprazole (according to the hospital drug policy). The most frequent dosage was 40 mg/day. Use of PPI for SUP was evaluated in 67 patients. Fifty-three patients (79%) had no risk factors for SUP. Twelve and 2 patients had one or two risk factors, respectively. At discharge, PPI prophylaxis was continued in 34% of patients with a de novo PPI prescription.Conclusion: This study highlights the overuse of PPIs in non-ICU patients and the inappropriate continuation of PPI prescriptions at discharge.Treatment
Resumo:
BACKGROUND: Combination highly active antiretroviral therapy (HAART) has significantly decreased HIV-1 related morbidity and mortality globally transforming HIV into a controllable condition. HAART has a number of limitations though, including limited access in resource constrained countries, which have driven the search for simpler, affordable HIV-1 treatment modalities. Therapeutic HIV-1 vaccines aim to provide immunological support to slow disease progression and decrease transmission. We evaluated the safety, immunogenicity and clinical effect of a novel recombinant plasmid DNA therapeutic HIV-1 vaccine, GTU(®)-multi-HIVB, containing 6 different genes derived from an HIV-1 subtype B isolate. METHODS: 63 untreated, healthy, HIV-1 infected, adults between 18 and 40 years were enrolled in a single-blinded, placebo-controlled Phase II trial in South Africa. Subjects were HIV-1 subtype C infected, had never received antiretrovirals, with CD4 ≥ 350 cells/mm(3) and pHIV-RNA ≥ 50 copies/mL at screening. Subjects were allocated to vaccine or placebo groups in a 2:1 ratio either administered intradermally (ID) (0.5mg/dose) or intramuscularly (IM) (1mg/dose) at 0, 4 and 12 weeks boosted at 76 and 80 weeks with 1mg/dose (ID) and 2mg/dose (IM), respectively. Safety was assessed by adverse event monitoring and immunogenicity by HIV-1-specific CD4+ and CD8+ T-cells using intracellular cytokine staining (ICS), pHIV-RNA and CD4 counts. RESULTS: Vaccine was safe and well tolerated with no vaccine related serious adverse events. Significant declines in log pHIV-RNA (p=0.012) and increases in CD4+ T cell counts (p=0.066) were observed in the vaccine group compared to placebo, more pronounced after IM administration and in some HLA haplotypes (B*5703) maintained for 17 months after the final immunisation. CONCLUSIONS: The GTU(®)-multi-HIVB plasmid recombinant DNA therapeutic HIV-1 vaccine is safe, well tolerated and favourably affects pHIV-RNA and CD4 counts in untreated HIV-1 infected individuals after IM administration in subjects with HLA B*57, B*8101 and B*5801 haplotypes.