221 resultados para Septum of Brain
Diurnal inhibition of NMDA-EPSCs at rat hippocampal mossy fibre synapses through orexin-2 receptors.
Resumo:
Diurnal release of the orexin neuropeptides orexin-A (Ox-A, hypocretin-1) and orexin-B (Ox-B, hypocretin-2) stabilises arousal, regulates energy homeostasis and contributes to cognition and learning. However, whether cellular correlates of brain plasticity are regulated through orexins, and whether they do so in a time-of-day-dependent manner, has never been assessed. Immunohistochemically we found sparse but widespread innervation of hippocampal subfields through Ox-A- and Ox-B-containing fibres in young adult rats. The actions of Ox-A were studied on NMDA receptor (NMDAR)-mediated excitatory synaptic transmission in acute hippocampal slices prepared around the trough (Zeitgeber time (ZT) 4-8, corresponding to 4-8 h into the resting phase) and peak (ZT 23) of intracerebroventricular orexin levels. At ZT 4-8, exogenous Ox-A (100 nm in bath) inhibited NMDA receptor-mediated excitatory postsynaptic currents (NMDA-EPSCs) at mossy fibre (MF)-CA3 (to 55.6 ± 6.8% of control, P = 0.0003) and at Schaffer collateral-CA1 synapses (70.8 ± 6.3%, P = 0.013), whereas it remained ineffective at non-MF excitatory synapses in CA3. Ox-A actions were mediated postsynaptically and blocked by the orexin-2 receptor (OX2R) antagonist JNJ10397049 (1 μm), but not by orexin-1 receptor inhibition (SB334867, 1 μm) or by adrenergic and cholinergic antagonists. At ZT 23, inhibitory effects of exogenous Ox-A were absent (97.6 ± 2.9%, P = 0.42), but reinstated (87.2 ± 3.3%, P = 0.002) when endogenous orexin signalling was attenuated for 5 h through i.p. injections of almorexant (100 mg kg(-1)), a dual orexin receptor antagonist. In conclusion, endogenous orexins modulate hippocampal NMDAR function in a time-of-day-dependent manner, suggesting that they may influence cellular plasticity and consequent variations in memory performance across the sleep-wake cycle.
Resumo:
Enhanced brain apoptosis (neurons and glia) may be involved in major depression (MD) and schizophrenia (SZ), mainly through the activation of the intrinsic (mitochondrial) apoptotic pathway. In the extrinsic death pathway, pro-apoptotic Fas-associated death domain (FADD) adaptor and its non-apoptotic p-Ser194 FADD form have critical roles interacting with other death regulators such as phosphoprotein enriched in astrocytes of 15kDa (PEA-15) and extracellular signal-regulated kinase (ERK). The basal status of FADD (protein and messenger RNA (mRNA)) and the effects of psychotropic drugs (detected in blood/urine samples) were first assessed in postmortem prefrontal cortex of MD and SZ subjects (including a non-MD/SZ suicide group). In MD, p-FADD, but not total FADD (and mRNA), was increased (26%, n=24; all MD subjects) as well as p-FADD/FADD ratio (a pro-survival marker) in antidepressant-free MD subjects (50%, n=10). In contrast, cortical FADD (and mRNA), p-FADD, and p-FADD/FADD were not altered in SZ brains (n=21) regardless of antipsychotic medications (except enhanced mRNA in treated subjects). Similar negative results were quantified in the non-MD/SZ suicide group. In MD, the regulation of multifunctional PEA-15 (i.e., p-Ser116 PEA-15 blocks pro-apoptotic FADD and PEA-15 prevents pro-survival ERK action) and the modulation of p-ERK1/2 were also investigated. Cortical p-PEA-15 was not changed whereas PEA-15 was increased mainly in antidepressant-treated subjects (16-20%). Interestingly, cortical p-ERK1/2/ERK1/2 ratio was reduced (33%) in antidepressant-free when compared to antidepressant-treated MD subjects. The neurochemical adaptations of brain FADD (increased p-FADD and pro-survival p-FADD/FADD ratio), as well as its interaction with PEA-15, could play a major role to counteract the known activation of the mitochondrial apoptotic pathway in MD.
Resumo:
The expression of calmodulin kinase IV (CaMKIV) can be induced by the thyroid hormone T3 in a time- and concentration-dependent manner at a very early stage of brain differentiation using a fetal rat telencephalon primary cell culture system which can grow and differentiate under chemically defined conditions (Krebs et al. (1996) J. Biol. Chem. 271, 11055-11058). After the induction of CaMKIV by T3 we examined the influence of prolonged absence of T3 from the culture medium on the expression of CaMKIV. We could demonstrate that after the T3-dependent induction of CaMKIV, omission of the hormone, even for 8 days, from the medium did not downregulate the expression of CaMKIV indicating that different regulatory mechanisms became important for the expression of the enzyme. We further showed that CaMKIV could be involved in the Ca(2+) -dependent expression of the immediate early gene c-fos, probably via phosphorylation of the transcription factor CREB. Convergence of signal transduction pathways on this transcription factor by using different protein kinases may explain the importance of CREB for the regulation of different cellular processes.
Resumo:
In order to induce a therapeutic T lymphocyte response, recombinant viral vaccines are designed to target professional antigen-presenting cells (APC) such as dendritic cells (DC). A key requirement for their use in humans is safe and efficient gene delivery. The present study assesses third-generation lentivectors with respect to their ability to transduce human and mouse DC and to induce antigen-specific CD8+ T-cell responses. We demonstrate that third-generation lentivectors transduce DC with a superior efficiency compared to adenovectors. The transfer of DC transduced with a recombinant lentivector encoding an antigenic epitope resulted in a strong specific CD8+ T-cell response in mice. The occurrence of lower proportions of nonspecifically activated CD8+ cells suggests a lower antivector immunity of lentivector compared to adenovector. Thus, lentivectors, in addition to their promise for gene therapy of brain disorders might also be suitable for immunotherapy.
Resumo:
The present work assessed the effects of intracerebroventricular injections (2x5 mg/2.5 ml) of recombined human nerve growth factor (rhNGF) at postnatal days 2 and 3 upon the development of spatial learning capacities in rats. The treated rats were trained at the age of 22 days to escape onto an invisible platform at a fixed position in space in a Morris navigation task. For half of the subjects, the training position was also cued, a procedure aimed at facilitating escape and reducing attention to the distant spatial cues. At the age of 2 months all the rats were retrained in the same task. Treatment effects were found in both immature and adult rats. The injection of NGF induced a slight alteration of the immature rats' performance. In contrast, a marked impairment of spatial abilities was shown in the 2-month-old rats. The most consistent effects were a significant increase in the escape latency and a decrease bias towards the training platform area during probe trials. The reduction of spatial memory was particularly marked if the subjects had been trained in a cued condition. Taken together, these experiments reveal that an acute pharmacological treatment that leads to transient modifications during early development might induce a behavioural change long after treatment. Thus, the development and the maintenance of an accurate spatial representation are tightly related to the development of brain structures that could be altered by precocious NGF administrations.
Resumo:
The evolution of ischemic brain damage is strongly affected by an inflammatory reaction that involves soluble mediators, such as cytokines and chemokines, and specialized cells activated locally or recruited from the periphery. The immune system affects all phases of the ischemic cascade, from the acute intravascular reaction due to blood flow disruption, to the development of brain tissue damage, repair and regeneration. Increased endothelial expression of adhesion molecules and blood-brain barrier breakdown promotes extravasation and brain recruitment of blood-borne cells, including macrophages, neutrophils, dendritic cells and T lymphocytes, as demonstrated both in animal models and in human stroke. Nevertheless, most anti-inflammatory approaches showing promising results in experimental stroke models failed in the clinical setting. The lack of translation may reside in the redundancy of most inflammatory mediators, exerting both detrimental and beneficial functions. Thus, this review is aimed at providing a better understanding of the dualistic role played by each component of the inflammatory/immune response in relation to the spatio-temporal evolution of ischemic stroke injury.
Resumo:
Do our brains implicitly track the energetic content of the foods we see? Using electrical neuroimaging of visual evoked potentials (VEPs) we show that the human brain can rapidly discern food's energetic value, vis à vis its fat content, solely from its visual presentation. Responses to images of high-energy and low-energy food differed over two distinct time periods. The first period, starting at approximately 165 ms post-stimulus onset, followed from modulations in VEP topography and by extension in the configuration of the underlying brain network. Statistical comparison of source estimations identified differences distributed across a wide network including both posterior occipital regions and temporo-parietal cortices typically associated with object processing, and also inferior frontal cortices typically associated with decision-making. During a successive processing stage (starting at approximately 300 ms), responses differed both topographically and in terms of strength, with source estimations differing predominantly within prefrontal cortical regions implicated in reward assessment and decision-making. These effects occur orthogonally to the task that is actually being performed and suggest that reward properties such as a food's energetic content are treated rapidly and in parallel by a distributed network of brain regions involved in object categorization, reward assessment, and decision-making.
Resumo:
Seeing seems effortless, despite the need to segregate and integrate visual information that varies in quality, quantity, and location. The extent to which seeing passively recapitulates the external world is challenged by phenomena such as illusory contours, an example of visual completion whereby borders are perceived despite their physical absence in the image. Instead, visual completion and seeing are increasingly conceived as active processes, dependent on information exchange across neural populations. How this is instantiated in the brain remains controversial. Divergent models emanate from single-unit and population-level electrophysiology, neuroimaging, and neurostimulation studies. We reconcile discrepant findings from different methods and disciplines, and underscore the importance of taking into account spatiotemporal brain dynamics in generating models of brain function and perception.
Resumo:
The importance of the lateral hypothalamus in the pursuit of reward has long been recognized. However, the hypothalamic neuronal network involved in the regulation of reward still remains partially unknown. Hypocretins (aka orexins) are neuropeptides synthesized by a few thousand neurons restricted to the lateral hypothalamus and the perifornical area. Compelling evidence indicates that hypocretin neurons receive inputs from sensory and limbic systems and drive hyper-arousal possibly through modulation of stress responses. Major advances have been made in the elucidation of the hypocretin involvement in the regulation of arousal, stress, motivation, and reward seeking, without clearly defining the role of hypocretins in addictionrelated behaviors. We have recently gathered substantial evidence that points to a previously unidentified role for hypocretin-1 in driving relapse for cocaine seeking through activation of brain stress pathways. Meanwhile, several authors published concordant observations rather suggesting a direct activation of the mesolimbic dopamine system. In particular, hypocretin-1 has been shown to be critically involved in cocaine sensitization through the recruitment of NMDA receptors in the ventral tegmental area. Overall, on can conclude from recent findings that activation of hypocretin/orexin neurons plays a critical role in the development of the addiction process, either by contributing to brain sensitization (which is thought to lead to the unmanageable desire for drug intake) or by modulating the brain reward system that, in coordination with brain stress systems, leads to a vulnerable state that may facilitate relapse for drug seeking behavior.
Resumo:
PURPOSE OF REVIEW: An important goal of neurocritical care is the management of secondary brain injury (SBI), that is pathological events occurring after primary insult that add further burden to outcome. Brain oedema, cerebral ischemia, energy dysfunction, seizures and systemic insults are the main components of SBI. We here review recent data showing the clinical utility of brain multimodality monitoring (BMM) for the management of SBI. RECENT FINDINGS: Despite being recommended by international guidelines, standard intracranial pressure (ICP) monitoring may be insufficient to detect all episodes of SBI. ICP monitoring, combined with brain oxygen (PbtO(2)), cerebral microdialysis and regional cerebral blood flow, might help to target therapy (e.g. management of cerebral perfusion pressure, blood transfusion, glucose control) to patient-specific pathophysiology. Physiological parameters derived from BMM, including PbtO(2) and microdialysis lactate/pyruvate ratio, correlate with outcome and have recently been incorporated into neurocritical care guidelines. Advanced intracranial devices can be complemented by quantitative electroencephalography to monitor changes of brain function and nonconvulsive seizures. SUMMARY: BMM offers an on-line comprehensive scrutiny of the injured brain and is increasingly used for the management of SBI. Integration of monitored data using new informatics tools may help optimize therapy of brain-injured patients and quality of care.
Resumo:
PURPOSE: To illustrate the evolution of brain perfusion-weighted magnetic resonance imaging (PWI-MRI) in severe neonatal hypoxic-ischemic (HI) encephalopathy, and its possible relation to further neurodevelopmental outcome. MATERIALS AND METHODS: Two term neonates with HI encephalopathy underwent an early and a late MRI, including PWI. They were followed until eight months of age. A total of three "normal controls" were also included. Perfusion maps were obtained, and relative cerebral blood flow (rCBF) and cerebral blood volume (rCBV) values were measured. RESULTS: Compared to normal neonates, a hyperperfusion (increased rCBF and rCBV) was present on early scans in the whole brain. On late scans, hyperperfusion persisted in cortical gray matter (normalization of rCBF and rCBV ratios in white matter and basal ganglia, but not in cortical gray matter). Diffusion-weighted imaging (DWI) was normalized, and extensive lesions became visible on T2-weighted images. Both patients displayed very abnormal outcome: Patient 2 with the more abnormal early and late hyperperfusion being the worst. CONCLUSION: PWI in HI encephalopathy did not have the same temporal evolution as DWI, and remained abnormal for more than one week after injury. This could be a marker of an ongoing mechanism underlying severe neonatal HI encephalopathy. Evolution of PWI might help to predict further neurodevelopmental outcome.
Resumo:
Delta 9-tetrahydrocannabinol (THC) has been proposed as therapeutic agent in the treatment of multiple sclerosis. In the present study, we examined whether a modulation of brain inflammatory by THC may protect against demyelination. Myelinating aggregating brain cell cultures were subjected to demyelination by a repeated treatment (3x) with the two inflammatory agents interferon-y (IFN-y) and lipopolysaccharide (LPS). The effects of THC on an acute inflammatory reponse were also examined by treating the aggregates with a single application of the two inflammatory agents. THC effects on the demyelinating process and on several mediators of the inflammatory reponse were analyzed. THC treatment partially prevented the decreased immunoreactivity for MBP, and the decrease in MBP content measured by immunoblotting. It prevented IFN-y + LPS -induced microglial reactivity; and decreased the IFN-y + LPS-induced i8ncreased phosphorylation of p44/42 MAP kinase. The other inflammatory markers, I-NOS and TNF-a mRNA expression, and p38 MAP kinase phosphorylation of p44/42 MAP kinase. The other inflammatory markers, I-NOS and TNF-a mRNA expression, and p38 MAP kinase phosphorylation were downregulated by THC treatment following a single application of the inflammatory agents, but not after repeated applications. THC protected partially against the IFN-y + LPS-induced demyelination. The protective effect of THC on IFN-y + LPS-induced demyelination may be due to a decrease of the inflammatory reponse. However, the anti-inflammatory effect of THC on some inflammatory markers is lost when the inflammatory response is more proeminent and of longer duration, suggesting either that the anti-inflammatory effect of a molecule may depend on the properties of the inflammatory response, or that the anti-inflammatory potential of THC decreases in case of repeated exposure.
Resumo:
Decision-making in an uncertain environment is driven by two major needs: exploring the environment to gather information or exploiting acquired knowledge to maximize reward. The neural processes underlying exploratory decision-making have been mainly studied by means of functional magnetic resonance imaging, overlooking any information about the time when decisions are made. Here, we carried out an electroencephalography (EEG) experiment, in order to detect the time when the brain generators responsible for these decisions have been sufficiently activated to lead to the next decision. Our analyses, based on a classification scheme, extract time-unlocked voltage topographies during reward presentation and use them to predict the type of decisions made on the subsequent trial. Classification accuracy, measured as the area under the Receiver Operator's Characteristic curve was on average 0.65 across 7 subjects. Classification accuracy was above chance levels already after 516 ms on average, across subjects. We speculate that decisions were already made before this critical period, as confirmed by a positive correlation with reaction times across subjects. On an individual subject basis, distributed source estimations were performed on the extracted topographies to statistically evaluate the neural correlates of decision-making. For trials leading to exploration, there was significantly higher activity in dorsolateral prefrontal cortex and the right supramarginal gyrus; areas responsible for modulating behavior under risk and deduction. No area was more active during exploitation. We show for the first time the temporal evolution of differential patterns of brain activation in an exploratory decision-making task on a single-trial basis.
Resumo:
GLUT8 is a high-affinity glucose transporter present mostly in testes and a subset of brain neurons. At the cellular level, it is found in a poorly defined intracellular compartment in which it is retained by an N-terminal dileucine motif. Here we assessed GLUT8 colocalization with markers for different cellular compartments and searched for signals, which could trigger its cell surface expression. We showed that when expressed in PC12 cells, GLUT8 was located in a perinuclear compartment in which it showed partial colocalization with markers for the endoplasmic reticulum but not with markers for the trans-Golgi network, early endosomes, lysosomes, and synaptic-like vesicles. To evaluate its presence at the plasma membrane, we generated a recombinant adenovirus for the expression of GLUT8 containing an extracellular myc epitope. Cell surface expression was evaluated by immunofluorescence microscopy of transduced PC12 cells or primary hippocampal neurons exposed to different stimuli. Those included substances inducing depolarization, activation of protein kinase A and C, activation or inhibition of tyrosine kinase-linked signaling pathways, glucose deprivation, AMP-activated protein kinase stimulation, and osmotic shock. None of these stimuli-induced GLUT8 cell surface translocation. Furthermore, when GLUT8myc was cotransduced with a dominant-negative form of dynamin or GLUT8myc-expressing PC-12 cells or neurons were incubated with an anti-myc antibody, no evidence for constitutive recycling of the transporter through the cell surface could be obtained. Thus, in cells normally expressing it, GLUT8 was associated with a specific intracellular compartment in which it may play an as-yet-uncharacterized role.
Resumo:
A 3D in vitro model of rat organotypic brain cell cultures in aggregates was used to investigate neurotoxicity mechanisms in methylmalonic aciduria. 1 mM methylmalonate (MMA), 2-methylcitrate (2-MCA) or propionate (PA) were repeatedly added to the culture media at two different time points of the cultures. In cultures treated with 2-MCA, we observed a significant increase of lactate in the medium, consistent with a possible inhibition of Krebs cycle and respiratory chain, as described earlier in the literature. Interestingly, we further observed that 2-MCA induced an important increase in ammonia production with concomitant decrease of glutamine concentrations, which suggests an inhibition of the astrocytic enzyme glutamine synthetase. These previously unreported findings may uncover a pathogenic mechanism in this disease with deleterious effects on early stages of brain development. By immunohistochemistry we could show that 2-MCA substantially increased the number of apoptotic cells. On the cellular level, 2-MCA had a toxic effect (cell swelling and cell death) on glial cells, but not on neurons. Surprisingly, MMA seemed to have a growth stimulating effect on the cultures. We can conclude that 2-MCA was the most toxic metabolite in our model for methylmalonic aciduria inducing ammonia accumulation and massive apoptosis in brain cells.