170 resultados para Roman right
Resumo:
Right ventricular (RV) rupture in cases of mediastinitis following cardiac surgery is a rare and dangerous complication. Bleeding from the right ventricle occurs mainly after sternal reopening, due to either iatrogenic manipulation (wire removal, lesions due to wiring maneuvers) or mechanical shearing forces, producing direct injury. We present a case of RV wall perforation due to infection in a recurrent postoperative mediastinitis with a closed chest. The current literature on treatment of postoperative mediastinitis is also reviewed.
Resumo:
Focal epilepsy is increasingly recognized as the result of an altered brain network, both on the structural and functional levels and the characterization of these widespread brain alterations is crucial for our understanding of the clinical manifestation of seizure and cognitive deficits as well as for the management of candidates to epilepsy surgery. Tractography based on Diffusion Tensor Imaging allows non-invasive mapping of white matter tracts in vivo. Recently, diffusion spectrum imaging (DSI), based on an increased number of diffusion directions and intensities, has improved the sensitivity of tractography, notably with respect to the problem of fiber crossing and recent developments allow acquisition times compatible with clinical application. We used DSI and parcellation of the gray matter in regions of interest to build whole-brain connectivity matrices describing the mutual connections between cortical and subcortical regions in patients with focal epilepsy and healthy controls. In addition, the high angular and radial resolution of DSI allowed us to evaluate also some of the biophysical compartment models, to better understand the cause of the changes in diffusion anisotropy. Global connectivity, hub architecture and regional connectivity patterns were altered in TLE patients and showed different characteristics in RTLE vs LTLE with stronger abnormalities in RTLE. The microstructural analysis suggested that disturbed axonal density contributed more than fiber orientation to the connectivity changes affecting the temporal lobes whereas fiber orientation changes were more involved in extratemporal lobe changes. Our study provides further structural evidence that RTLE and LTLE are not symmetrical entities and DSI-based imaging could help investigate the microstructural correlate of these imaging abnormalities.
Resumo:
Adjusting behavior following the detection of inappropriate actions allows flexible adaptation to task demands and environmental contingencies during goal-directed behaviors. Post-error behavioral adjustments typically consist in adopting more cautious response mode, which manifests as a slowing down of response speed. Although converging evidence involves the dorsolateral prefrontal cortex (DLPFC) in post-error behavioral adjustment, whether and when the left or right DLPFC is critical for post-error slowing (PES), as well as the underlying brain mechanisms, remain highly debated. To resolve these issues, we used single-pulse transcranial magnetic stimulation in healthy human adults to disrupt the left or right DLPFC selectively at various delays within the 30-180ms interval following false alarms commission, while participants preformed a standard visual Go/NoGo task. PES significantly increased after TMS disruption of the right, but not the left DLPFC at 150ms post-FA response. We discuss these results in terms of an involvement of the right DLPFC in reducing the detrimental effects of error detection on subsequent behavioral performance, as opposed to implementing adaptative error-induced slowing down of response speed.