169 resultados para Reproducing Transformation Method


Relevância:

20.00% 20.00%

Publicador:

Resumo:

OBJECTIVE: Evaluation of the quantitative antibiogram as an epidemiological tool for the prospective typing of methicillin-resistant Staphylococcus aureus (MRSA), and comparison with ribotyping. METHODS: The method is based on the multivariate analysis of inhibition zone diameters of antibiotics in disk diffusion tests. Five antibiotics were used (erythromycin, clindamycin, cotrimoxazole, gentamicin, and ciprofloxacin). Ribotyping was performed using seven restriction enzymes (EcoRV, HindIII, KpnI, PstI, EcoRI, SfuI, and BamHI). SETTING: 1,000-bed tertiary university medical center. RESULTS: During a 1-year period, 31 patients were found to be infected or colonized with MRSA. Cluster analysis of antibiogram data showed nine distinct antibiotypes. Four antibiotypes were isolated from multiple patients (2, 4, 7, and 13, respectively). Five additional antibiotypes were isolated from the remaining five patients. When analyzed with respect to the epidemiological data, the method was found to be equivalent to ribotyping. Among 206 staff members who were screened, six were carriers of MRSA. Both typing methods identified concordant of MRSA types in staff members and in the patients under their care. CONCLUSIONS: The quantitative antibiogram was found to be equivalent to ribotyping as an epidemiological tool for typing of MRSA in our setting. Thus, this simple, rapid, and readily available method appears to be suitable for the prospective surveillance and control of MRSA for hospitals that do not have molecular typing facilities and in which MRSA isolates are not uniformly resistant or susceptible to the antibiotics tested.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

OBJECTIVE: The purpose of the present study was to submit the same materials that were tested in the round robin wear test of 2002/2003 to the Alabama wear method. METHODS: Nine restorative materials, seven composites (belleGlass, Chromasit, Estenia, Heliomolar, SureFil, Targis, Tetric Ceram) an amalgam (Amalcap) and a ceramic (IPS Empress) have been submitted to the Alabama wear method for localized and generalized wear. The test centre did not know which brand they were testing. Both volumetric and vertical loss had been determined with an optical sensor. After completion of the wear test, the raw data were sent to IVOCLAR for further analysis. The statistical analysis of the data included logarithmic transformation of the data, the calculation of relative ranks of each material within each test centre, measures of agreement between methods, the discrimination power and coefficient of variation of each method as well as measures of the consistency and global performance for each material. RESULTS: Relative ranks of the materials varied tremendously between the test centres. When all materials were taken into account and the test methods compared with each other, only ACTA agreed reasonably well with two other methods, i.e. OHSU and ZURICH. On the other hand, MUNICH did not agree with the other methods at all. The ZURICH method showed the lowest discrimination power, ACTA, IVOCLAR and ALABAMA localized the highest. Material-wise, the best global performance was achieved by the leucite reinforced ceramic material Empress, which was clearly ahead of belleGlass, SureFil and Estenia. In contrast, Heliomolar, Tetric Ceram and especially Chromasit demonstrated a poor global performance. The best consistency was achieved by SureFil, Tetric Ceram and Chromasit, whereas the consistency of Amalcap and Heliomolar was poor. When comparing the laboratory data with clinical data, a significant agreement was found for the IVOCLAR and ALABAMA generalized wear method. SIGNIFICANCE: As the different wear simulator settings measure different wear mechanisms, it seems reasonable to combine at least two different wear settings to assess the wear resistance of a new material.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Accurate modeling of flow instabilities requires computational tools able to deal with several interacting scales, from the scale at which fingers are triggered up to the scale at which their effects need to be described. The Multiscale Finite Volume (MsFV) method offers a framework to couple fine-and coarse-scale features by solving a set of localized problems which are used both to define a coarse-scale problem and to reconstruct the fine-scale details of the flow. The MsFV method can be seen as an upscaling-downscaling technique, which is computationally more efficient than standard discretization schemes and more accurate than traditional upscaling techniques. We show that, although the method has proven accurate in modeling density-driven flow under stable conditions, the accuracy of the MsFV method deteriorates in case of unstable flow and an iterative scheme is required to control the localization error. To avoid large computational overhead due to the iterative scheme, we suggest several adaptive strategies both for flow and transport. In particular, the concentration gradient is used to identify a front region where instabilities are triggered and an accurate (iteratively improved) solution is required. Outside the front region the problem is upscaled and both flow and transport are solved only at the coarse scale. This adaptive strategy leads to very accurate solutions at roughly the same computational cost as the non-iterative MsFV method. In many circumstances, however, an accurate description of flow instabilities requires a refinement of the computational grid rather than a coarsening. For these problems, we propose a modified iterative MsFV, which can be used as downscaling method (DMsFV). Compared to other grid refinement techniques the DMsFV clearly separates the computational domain into refined and non-refined regions, which can be treated separately and matched later. This gives great flexibility to employ different physical descriptions in different regions, where different equations could be solved, offering an excellent framework to construct hybrid methods.