354 resultados para RAT SKIN
Resumo:
A reduced secretion of thyroid hormones with age has been documented in humans and animals with no substantial increase in TSH secretion, which may be indicative of an age-related impairment of the pituitary sensitivity to the negative control exerted by thyroid hormones. We have evaluated in rats the influence of sex and age on pituitary T3 nuclear receptors--known to be determinant in the regulation of TSH secretion--as well as on T3 concentration in the pituitary gland. As regards sex, the density of T3 receptors and the concentration of T3 in pituitary gland and plasma were greater in females than in males whereas pituitary and plasma TSH concentrations were less. As for age, the density of T3 receptors was greater in old male rats than in young ones with no changes in pituitary T3 and plasma TSH concentrations. In old female rats in contrast, there was no significant increase in T3 receptors but pituitary T3 was less and plasma TSH greater than in young female rats. In both sexes plasma thyroid hormones and pituitary TSH were reduced with age whereas TSH response to TRH was not altered. These results illustrate sex and age differences in pituitary T3 receptors and pituitary T3 concentration as well as in TSH secretion. In young animals of both sexes an inverse correlation is observed between the density of pituitary T3 receptors and plasma TSH. In contrast, in old animals the absence of this correlation is suggestive of an age-related impairment of T3 action on the thyrotrophs or of changes pertaining to other factors modulating TSH secretion.
Resumo:
Peroxisome proliferator-activated receptors (PPARs) are nuclear hormone receptors that regulate the expression of many genes involved in lipid metabolism. The biological roles of PPARalpha and PPARgamma are relatively well understood, but little is known about the function of PPARbeta. To address this question, and because PPARbeta is expressed to a high level in the developing brain, we used reaggregated brain cell cultures prepared from dissociated fetal rat telencephalon as experimental model. In these primary cultures, the fetal cells initially form random aggregates, which progressively acquire a tissue-specific pattern resembling that of the brain. PPARs are differentially expressed in these aggregates, with PPARbeta being the prevalent isotype. PPARalpha is present at a very low level, and PPARgamma is absent. Cell type-specific expression analyses revealed that PPARbeta is ubiquitous and most abundant in some neurons, whereas PPARalpha is predominantly astrocytic. We chose acyl-CoA synthetases (ACSs) 1, 2, and 3 as potential target genes of PPARbeta and first analyzed their temporal and cell type-specific pattern. This analysis indicated that ACS2 and PPARbeta mRNAs have overlapping expression patterns, thus designating the ACS2 gene as a putative target of PPARbeta. Using a selective PPARbeta activator, we found that the ACS2 gene is transcriptionally regulated by PPARbeta, demonstrating a role for PPARbeta in brain lipid metabolism.
Resumo:
Although non-melanoma skin cancer (NMSC) is the most common human cancer and its incidence continues to rise worldwide, the mechanisms underlying its development remain incompletely understood. Here, we unveil a cascade of events involving peroxisome proliferator-activated receptor (PPAR) β/δ and the oncogene Src, which promotes the development of ultraviolet (UV)-induced skin cancer in mice. UV-induced PPARβ/δ activity, which directly stimulated Src expression, increased Src kinase activity and enhanced the EGFR/Erk1/2 signalling pathway, resulting in increased epithelial-to-mesenchymal transition (EMT) marker expression. Consistent with these observations, PPARβ/δ-null mice developed fewer and smaller skin tumours, and a PPARβ/δ antagonist prevented UV-dependent Src stimulation. Furthermore, the expression of PPARβ/δ positively correlated with the expression of SRC and EMT markers in human skin squamous cell carcinoma (SCC), and critically, linear models applied to several human epithelial cancers revealed an interaction between PPARβ/δ and SRC and TGFβ1 transcriptional levels. Taken together, these observations motivate the future evaluation of PPARβ/δ modulators to attenuate the development of several epithelial cancers.
Resumo:
The concentrations of the general neuronal markers D2-protein (N-CAM), D3-protein and neuron specific enolase (NSE) in reaggregating cultures of fetal rat telencephalon cells were affected by the presence of 30 nM triiodothyronine in the defined culture medium. The extent of normal developmental changes were enhanced by triiodothyronine, as demonstrated by crossed immunoelectrophoresis. From 13 to 19 days in culture, the concentration of D2-protein decreased, and the concentrations of both D3-protein and NSE increased. Nerve growth factor (NGF) was without effect on the development of these general neuronal markers. However, as shown previously both triiodothyronine and NGF increased the activity of choline acetyltransferase, a marker for cholinergic neurons. The results suggest an enhanced overall differentiation of several types of telencephalon neurons in the presence of triiodothyronine, and a specific stimulation of cholinergic telencephalon neurons by NGF.
Resumo:
Apoptosis is defined as a programmed cell death process operating in multicellular organisms in order to maintain proper homeostasis of tissues. Caspases are among the best characterized proteases to execute apoptosis although lately many studies have associated them with non-apoptotic functions. In the laboratory an antiapoptotic pathway relying on caspase-3 activation and RasGAP has been described in vitro. RasGAP bears two conserved caspase-3 cleavage sites. Under low stress conditions, RasGAP is first cleaved by low caspase-3 activity generating an N terminal fragment (fragment N) that induces a potent anti-apoptotic response mediated by the Ras/PI3K/Akt pathway. High levels of active caspase-3, associated with increased stress conditions, induce further cleavage of fragment N abrogating this anti-apoptotic response. In the present work I studied the functionality of fragment N-mediated protection in physiological conditions as well as the mechanism by which fragment N induces an anti-apoptotic response, with a focus on survivin, an inhibitor of apoptosis. During my work in the laboratory I found that mice lacking caspase-3 or unable to cleave RasGAP (KI mice) are deficient in Akt activation and more sensitive to apoptosis than wild-type mice in response to stress. This higher sensitivity to stress led to augmented tissue damage, highlighting the importance of this pathway in protection against low stress. In parallel I focused on the study of survivin expression in the skin in response to UV-B light and I found that survivin is induced in the cytoplasm of keratinocytes in response to stress where it may fulfill a cyto-protective role. However fragment N had no effect on survivin expression. In addition, cytoplasmic survivin was increased in keratinocytes exposed to UV-B light, whether RasGAP is cleaved (WT mice) or not (KI mice), indicating that survivin is not involved in fragment N mediated protection. Altogether these data indicate that fragment N is pivotal for cell protection against pathophysiologic damage and can encourage the development of therapies aimed to strengthen the resistance of cells against aggressive treatments. Importantly, this finding contributes to the characterization of how caspase-3 can be activated without inducing cell death, although further studies need to be conducted in order to completely characterize this pro-survival molecular mechanism.
Resumo:
Recent studies at high magnetic fields using the phase of gradient-echo MR images have shown the ability to unveil cortical substructure in the human brain. To investigate the contrast mechanisms in phase imaging, this study extends, for the first time, phase imaging to the rodent brain. Using a 14.1 T horizontal bore animal MRI scanner for in vivo micro-imaging, images with an in-plane resolution of 33 microm were acquired. Phase images revealed, often more clearly than the corresponding magnitude images, hippocampal fields, cortical layers (e.g. layer 4), cerebellar layers (molecular and granule cell layers) and small white matter structures present in the striatum and septal nucleus. The contrast of the phase images depended in part on the orientation of anatomical structures relative to the magnetic field, consistent with bulk susceptibility variations between tissues. This was found not only for vessels, but also for white matter structures, such as the anterior commissure, and cortical layers in the cerebellum. Such susceptibility changes could result from variable blood volume. However, when the deoxyhemoglobin content was reduced by increasing cerebral blood flow (CBF) with a carbogen breathing challenge, contrast between white and gray matter and cortical layers was not affected, suggesting that tissue cerebral blood volume (and therefore deoxyhemoglobin) is not a major source of the tissue phase contrast. We conclude that phase variations in gradient-echo images are likely due to susceptibility shifts of non-vascular origin.
Resumo:
BACKGROUND: Wound healing involves complex mechanisms, which, if properly chaperoned, can enhance patient recovery. The abilities of platelets and keratinocytes may be harnessed in order to stimulate wound healing through the formation of platelet clots, the release of several growth factors and cytokines, and cell proliferation. The aim of the study was to test whether autologous keratinocyte suspensions in platelet concentrate would improve wound healing. The study was conducted at the Lausanne University Hospital, Switzerland in 45 patients, randomized to three different topical treatment groups: standard treatment serving as control, autologous platelet concentrate (PC) and keratinocytes suspended in autologous platelet concentrate (PC + K). Split thickness skin graft donor sites were chosen on the anterolateral thighs of patients undergoing plastic surgery for a variety of defects. Wound healing was assessed by the duration and quality of the healing process. Pain intensity was evaluated at day five. RESULTS: Healing time was reduced from 13.9 ± 0.5 days (mean ± SEM) in the control group to 7.2 ± 0.2 days in the PC group (P < 0.01). An addition of keratinocytes in suspension further reduced the healing time to 5.7 ± 0.2 days. Pain was reduced in both the PC and PC + K groups. Data showed a statistically detectable advantage of using PC + K over PC alone (P < 0.01). CONCLUSION: The results demonstrate the positive contribution of autologous platelets combined with keratinocytes in stimulating wound healing and reducing pain. This strikingly simple approach could have a significant impact on patient care, especially critically burned victims for whom time is of the essence. CLINICAL TRIAL REGISTRY INFORMATION: Protocol Record Identification Number: 132/03Registry URL: http://www.clinicaltrials.gov.
Resumo:
With no less than 15,000 estimated new cases diagnosed per year, non melanomatous carcinomas are the commonest cutaneous cancers in the Swiss population. About 1 in 3 new cancer case is a basal (BCC) or a squamous cell carcinoma (SCC). Incidence rates are steadily increasing, faster for BCC than SCC. Rates are higher for men than women and increase exponentially with age. Systematic population-based registration of non melanomatous skin cancers faces many challenges that few cancer registries can meet. Rates of these cancers in Switzerland are among the highest in Europe. Primary and secondary nationwide prevention campaigns have been carried out for nearly 20 years with a focus on the deadliest cutaneous cancer: melanoma. However, detection of non melanomatous skin cancers benefits from these campaigns since prevention messages and means of early detection are similar for melanomas and other skin cancers.
Resumo:
Skin exposures to chemicals may lead, through percutaneous permeation, to a significant increase in systemic circulation. Skin is the primary route of entry during some occupational activities, especially in agriculture. To reduce skin exposures, the use of personal protective equipment (PPE) is recommended. PPE efficiency is characterized as the time until products permeate through material (lag time, Tlag). Both skin and PPE permeations are assessed using similar in vitro methods; the diffusion cell system. Flow-through diffusion cells were used in this study to assess the permeation of two herbicides, bentazon and isoproturon, as well as four related commercial formulations (Basagran(®), Basamais(®), Arelon(®) and Matara(®)). Permeation was measured through fresh excised human skin, protective clothing suits (suits) (Microchem(®) 3000, AgriSafe Pro(®), Proshield(®) and Microgard(®) 2000 Plus Green), and a combination of skin and suits. Both herbicides, tested by itself or as an active ingredient in formulations, permeated readily through human skin and tested suits (Tlag < 2 h). High permeation coefficients were obtained regardless of formulations or tested membranes, except for Microchem(®) 3000. Short Tlag, were observed even when skin was covered with suits, except for Microchem(®) 3000. Kp values tended to decrease when suits covered the skin (except when Arelon(®) was applied to skin covered with AgriSafe Pro and Microgard(®) 2000), suggesting that Tlag alone is insufficient in characterizing suits. To better estimate human skin permeations, in vitro experiments should not only use human skin but also consider the intended use of the suit, i.e., the active ingredient concentrations and type of formulations, which significantly affect skin permeation.
Resumo:
AIM: The antihypertensive effect of renal denervation in hypertensive patients is partially explained by increased tubular natriuresis. To study the possible contribution of the kallikrein-kinin system (KKS) to this natriuretic effect in rats, we measured kallikrein activity (KA) and bradykinin concentrations (BK) in plasma and tissues. METHODS: To measure KA, we adapted and validated an enzymatic assay that cleaves para-nitroaniline (pNA) from the tripeptide H-D-Pro-Phe-Arg-pNA. The coefficients of variation (CV) within- and between-assays were less than 8% for plasma and tissue KA (plasma n=6 and 13; tissue n=4). Linear results for serially diluted samples confirmed the assay specificity. Tissue BK determinations were based on an established assay for plasma BK: tissue was homogenized and kinins extracted in ethanol, and BK was isolated by high-performance (HPLC) liquid chromatography and quantitated by radioimmunassay. Within- and between-assay CV for plasma BK were 18% (n=8 and n=35, respectively) and for BK in various tissues less than 16% (n=5-8). RESULTS: In male Wistar rats (n=3), plasma BK was 8.2±6.6 fmol/mL (mean±SD), and tissue BK (fmol/g) in 14 tested organs varied between brain (14±3) and submaxillary gland (521±315). Six days after left-sided unilateral renal denervation, left renal tissue BK (89±9) was not different from right renal BK (75±23). Similarly, KA was comparable in the two kidneys (left 18.0±1.5, right 15.8±1.4μkat/g). CONCLUSION: Any possible effect of unilateral renal denervation on the kidney's KKS would have to be bilateral.
Resumo:
The intravenous, short-acting general anesthetic propofol was applied to three-dimensional (aggregating) cell cultures of fetal rat telencephalon. Both the clinically used formulation (Disoprivan, ICI Pharmaceuticals, Cheshire, England) and the pure form (2,6-diisopropylphenol) were tested at two different periods of brain development: immature brain cell cultures prior to synaptogenesis and at the time of intense synapses and myelin formation. At both time periods and for clinically relevant concentrations and time of exposure (i.e., concentrations > or = 2.0 micrograms/ml for 8 hr), propofol caused a significant decrease of glutamic acid decarboxylase activity. This effect persisted after removal of the drug, suggesting irreversible structural changes in GABAergic neurons. The gamma-aminobutyric acid type A (GABAA) blocking agents bicuculline and picrotoxin partially attenuated the neurotoxic effect of propofol in cultures treated at the more mature phase of development. This protective effect was not observed in the immature brain cells. The present data suggest that propofol may cause irreversible lesions to GABAergic neurons when given at a critical phase of brain development. In contrast, glial cells and myelin appeared resistant even to high doses of propofol.
Resumo:
Barbiturates are regularly used as an anesthetic for animal experimentation and clinical procedures and are frequently provided with solubilizing compounds, such as ethanol and propylene glycol, which have been reported to affect brain function and, in the case of (1)H NMR experiments, originate undesired resonances in spectra affecting the quantification. As an alternative, thiopental can be administrated without any solubilizing agents. The aim of the study was to investigate the effect of deep thiopental anesthesia on the neurochemical profile consisting of 19 metabolites and on glucose transport kinetics in vivo in rat cortex compared with alpha-chloralose using localized (1)H NMR spectroscopy. Thiopental was devoid of effects on the neurochemical profile, except for the elevated glucose at a given plasma glucose level resulting from thiopental-induced depression of glucose consumption at isoelectrical condition. Over the entire range of plasma glucose levels, steady-state glucose concentrations were increased on average by 48% +/- 8%, implying that an effect of deep thiopental anesthesia on the transport rate relative to cerebral glucose consumption ratio was increased by 47% +/- 8% compared with light alpha-chloralose-anesthetized rats. We conclude that the thiopental-induced isoelectrical condition in rat cortex significantly affected glucose contents by depressing brain metabolism, which remained substantial at isoelectricity.