339 resultados para Parathyroid Hormones


Relevância:

10.00% 10.00%

Publicador:

Resumo:

While evidence is accumulating that stress-induced glucocorticoid responses help organisms to quickly adjust their physiology and behaviour to life-threatening environmental perturbations, the function and the ecological factors inducing variation in baseline glucocorticoid levels remain poorly understood. In this study we investigated the effects of brood size by experimentally manipulating the number of nestlings per brood and the effect of weather condition on baseline corticosterone levels of nestling Alpine swifts (Apus melba). We also examined the potential negative consequences of an elevation of baseline corticosterone on nestling immunity by correlating corticosterone levels with ectoparasite intensity and the antibody production towards a vaccine. Although nestlings reared in enlarged broods were in poorer condition than nestlings reared in reduced broods, they showed similar baseline corticosterone levels. In contrast, nestling baseline corticosterone levels were higher immediately after cold and rainy episodes with strong winds. Neither nestling infestation rate by ectoparastic flies nor nestling antibody production against a vaccine was correlated with baseline corticosterone levels. Thus, our results suggest that altricial Alpine swift nestlings can quickly modulate baseline corticosterone levels in response to unpredictable variations in meteorological perturbation but not to brood size which may be associated with the degree of sibling competition. Apparently, short-term elevations of baseline corticosterone have no negative effects on nestling immunocompetence.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Adjustment of Na+ balance in extracellular fluids is achieved by regulated Na+ transport involving the amiloride-sensitive epithelial Na+ channel (ENaC) in the distal nephron. In this context, ENaC is controlled by a number of hormones, including vasopressin, which promotes rapid translocation of water and Na+ channels to the plasma membrane and long-term effects on transcription of vasopressin-induced and -reduced transcripts. We have identified a mRNA encoding the deubiquitylating enzyme ubiquitin-specific protease 10 (Usp10), whose expression is increased by vasopressin at both the mRNA and the protein level. Coexpression of Usp10 in ENaC-transfected HEK-293 cells causes a more than fivefold increase in amiloride-sensitive Na+ currents, as measured by whole cell patch clamping. This is accompanied by a three- to fourfold increase in surface expression of alpha- and gamma-ENaC, as shown by cell surface biotinylation experiments. Although ENaC is well known to be regulated by its direct ubiquitylation, Usp10 does not affect the ubiquitylation level of ENaC, suggesting an indirect effect. A two-hybrid screen identified sorting nexin 3 (SNX3) as a novel substrate of Usp10. We show that it is a ubiquitylated protein that is degraded by the proteasome; interaction with Usp10 leads to its deubiquitylation and stabilization. When coexpressed with ENaC, SNX3 increases the channel's cell surface expression, similarly to Usp10. In mCCD(cl1) cells, vasopressin increases SNX3 protein but not mRNA, supporting the idea that the vasopressin-induced Usp10 deubiquitylates and stabilizes endogenous SNX3 and consequently promotes cell surface expression of ENaC

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Treatment effects over 2 years of teriparatide vs. ibandronate in postmenopausal women with osteoporosis were compared using lumbar spine bone mineral density (BMD) and trabecular bone score (TBS). Teriparatide induced larger increases in BMD and TBS compared to ibandronate, suggesting a more pronounced effect on bone microarchitecture of the bone anabolic drug. INTRODUCTION: The trabecular bone score (TBS) is an index of bone microarchitecture, independent of bone mineral density (BMD), calculated from anteroposterior spine dual X-ray absorptiometry (DXA) scans. The potential role of TBS for monitoring treatment response with bone-active substances is not established. The aim of this study was to compare the effects of recombinant human 1-34 parathyroid hormone (teriparatide) and the bisphosphonate ibandronate (IBN), on lumbar spine (LS) BMD and TBS in postmenopausal women with osteoporosis. METHODS: Two patient groups with matched age, body mass index (BMI), and baseline LS BMD, treated with either daily subcutaneous teriparatide (N = 65) or quarterly intravenous IBN (N = 122) during 2 years and with available LS BMD measurements at baseline and 2 years after treatment initiation were compared. RESULTS: Baseline characteristics (overall mean ± SD) were similar between groups in terms of age 67.9 ± 7.4 years, body mass index 23.8 ± 3.8 kg/m(2), BMD L1-L4 0.741 ± 0.100 g/cm(2), and TBS 1.208 ± 0.100. Over 24 months, teriparatide induced a significantly larger increase in LS BMD and TBS than IBN (+7.6 % ± 6.3 vs. +2.9 % ± 3.3 and +4.3 % ± 6.6 vs. +0.3 % ± 4.1, respectively; P < 0.0001 for both). LS BMD and TBS were only weakly correlated at baseline (r (2) = 0.04) with no correlation between the changes in BMD and TBS over 24 months. CONCLUSIONS: In postmenopausal women with osteoporosis, a 2-year treatment with teriparatide led to a significantly larger increase in LS BMD and TBS than IBN, suggesting that teriparatide had more pronounced effects on bone microarchitecture than IBN.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Five functional mammalian facilitated hexose carriers (GLUTs) have been characterized by molecular cloning. By functional expression in heterologous systems, their specificity and affinity for different hexoses have been defined. There are three high-affinity transporters (GLUT-1, GLUT-3 and GLUT-4) and one low-affinity transporter (GLUT-2), and GLUT-5 is primarily a fructose carrier. Because their Michaelis constants (Km) are below the normal blood glucose concentration, the high-affinity transporters function at rates close to maximal velocity. Thus their level of cell surface expression greatly influences the rate of glucose uptake into the cells. In contrast, the rate of glucose uptake by GLUT-2 (Km = 17 mM) increases in parallel with the rise in blood glucose over the physiological concentration range. High-affinity transporters are found in almost every tissue, but their expression is higher in cells with high glycolytic activity. Glut-2, however, is found in tissues carrying large glucose fluxes, such as intestine, kidney, and liver. As an adaptive response to variations in metabolic conditions, the expression of these transporters is regulated by glucose and different hormones. Thus, because of their specific characteristics and regulated expression, the facilitated glucose transporters control fundamental aspects of glucose homeostasis. I review data pertaining to the structure and regulated expression of the glucose carriers present in intestine, kidney, and liver and discuss their role in the control of glucose flux into or out of these different tissues.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Neuropeptide Y (NPY) is present in the brain, the adrenal medulla, and peripheral sympathetic nerves. This peptide is released together with catecholamines during sympathoadrenal activation. It possesses direct vasoconstrictor properties that are not dependent on simultaneous adrenergic activation. Moreover, it potentiates the vascular effect of several stimulatory substances and may contribute to the modulation of blood pressure responsiveness under a number of circumstances. NPY may also be indirectly involved in the control of blood pressure through regulating the release of hormones with well-established actions on the cardiovascular system.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Peptide hormones within the secretin-glucagon family are expressed in endocrine cells of the pancreas and gastrointestinal epithelium and in specialized neurons in the brain, and subserve multiple biological functions, including regulation of growth, nutrient intake, and transit within the gut, and digestion, energy absorption, and energy assimilation. Glucagon, glucagon-like peptide-1, glucagon-like peptide-2, glucose-dependent insulinotropic peptide, growth hormone-releasing hormone and secretin are structurally related peptides that exert their actions through unique members of a structurally related G protein-coupled receptor class 2 family. This review discusses advances in our understanding of how these peptides exert their biological activities, with a focus on the biological actions and structural features of the cognate receptors. The receptors have been named after their parent and only physiologically relevant ligand, in line with the recommendations of the International Union of Pharmacology Committee on Receptor Nomenclature and Drug Classification (NC-IUPHAR).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Aims/hypothesis We assessed systemic and local muscle fuel metabolism during aerobic exercise in patients with type I diabetes at euglycaemia and hyperglycaemia with identical insulin levels.Methods This was a single-blinded randomised crossover study at a university diabetes unit in Switzerland. We studied seven physically active men with type I diabetes (mean +/- SEM age 33.5 +/- 2.4 years, diabetes duration 20.1 +/- 3.6 years, HbA(1c) 6.7 +/- 0.2% and peak oxygen uptake [VO2peak] 50.3 +/- 4.5 ml min(-1) kg(-1)). Men were studied twice while cycling for 120 min at 55 to 60% of VO2peak, with a blood glucose level randomly set either at 5 or 11 mmol/l and identical insulinaemia. The participants were blinded to the glycaemic level; allocation concealment was by opaque, sealed envelopes. Magnetic resonance spectroscopy was used to quantify intramyocellular glycogen and lipids before and after exercise. Indirect calorimetry and measurement of stable isotopes and counter-regulatory hormones complemented the assessment of local and systemic fuel metabolism.Results The contribution of lipid oxidation to overall energy metabolism was higher in euglycaemia than in hyperglycaemia (49.4 +/- 4.8 vs 30.6 +/- 4.2%; p<0.05). Carbohydrate oxidation accounted for 48.2 +/- 4.7 and 66.6 +/- 4.2% of total energy expenditure in euglycaemia and hyperglycaemia, respectively (p<0.05). The level of intramyocellular glycogen before exercise was higher in hyperglycaemia than in euglycaemia (3.4 +/- 0.3 vs 2.7 +/- 0.2 arbitrary units [AU]; p<0.05). Absolute glycogen consumption tended to be higher in hyperglycaemia than in euglycaemia (1.3 +/- 0.3 vs 0.9 +/- 0.1 AU). Cortisol and growth hormone increased more strongly in euglycaemia than in hyperglycaemia (levels at the end of exercise 634 52 vs 501 +/- 32 nmol/l and 15.5 +/- 4.5 vs 7.4 +/- 2.0 ng/ml, respectively; p<0.05).Conclusions/interpretation Substrate oxidation in type I diabetic patients performing aerobic exercise in euglycaemia is similar to that in healthy individuals revealing a shift towards lipid oxidation during exercise. In hyperglycaemia fuel metabolism in these patients is dominated by carbohydrate oxidation. Intramyocellular glycogen was not spared in hyperglycaemia.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Anabolic androgenic steroids (AAS) are doping agents that are mostly used for improvement of strength and muscle hypertrophy. In some sports, athletes reported that the intake of AAS is associated with a better recovery, a higher training load capacity and therefore an increase in physical and mental performances. The purpose of this study was to evaluate, the effect of multiple doses of AAS on different physiological parameters that could indirectly relate the physical state of athletes during a hard endurance training program. In a double blind settings, three groups (n = 9, 8 and 8) were orally administered placebo, testosterone undecanoate or 19-norandrostenedione, 12 times during 1 month. Serum biomarkers (creatine kinase, ASAT and urea), serum hormone profiles (testosterone, cortisol and LH) and urinary catecholamines (noradrenalin, adrenalin and dopamine) were evaluated during the treatment. Running performance was assessed before and after the intervention phase by means of a standardized treadmill test. None of the measured biochemical variables showed significant impact of AAS on physical stress level. Data from exercise testing on submaximal and maximal level did not reveal any performance differences between the three groups or their response to the treatment. In the present study, no effect of multiple oral doses of AAS on endurance performance or bioserum recovery markers was found.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Endogenous glucose production rate (EGPR) remains constant when lactate is infused in healthy humans. A decrease of glycogenolysis or of gluconeogenesis from endogenous precursors or a stimulation of glycogen synthesis, may all be involved; This autoregulation does not depend on changes in glucoregulatory hormones. It may be speculated that alterations in basal sympathetic tone may be involved. To gain insights into the mechanisms responsible for autoregulation of EGPR, glycogenolysis and gluconeogenesis were measured, with a novel method (based on the prelabelling of endogenous glycogen with 13C glucose, and determination of hepatic 13C glycogen enrichment from breath 13CO2 and respiratory gas exchanges) in healthy humans infused with lactate or saline. These measurements were performed with or without beta-adrenergic receptor blockade (propranolol). Infusion of lactate increased energy expenditure, but did not increase EGPR; the relative contributions of gluconeogenesis and glycogenolysis to EGPR were also unaltered. This indicates that autoregulation is attained, at least in part, by inhibition of gluconeogenesis from endogenous precursors. beta-adrenergic receptor blockade alone (with propranolol) did not alter EGPR, glycogenolysis or gluconeogenesis. During infusion of lactate, propranolol decreased the thermic effect of lactate but EGPR remained constant. This indicates that alterations of beta-adrenergic activity is not required for autoregulation of EGPR.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The tubero-infundibular and nigrostriatal DA neurone systems of rats respond to systemic (i.p.) injection of alpha-MSH (2-100 microgram/kg). The response of the tubero-infundibular (arcuate) DA neurones, an increase in cellular fluorescence intensity which can be interpreted as a sign of increased neuronal activity, is essentially the same in males, estrogen-progesterone-pretreated ovariectomized females and hypophysectomized males, whereas the type of response elicited by alpha-MSH in the nigral DA neurones depends upon the hormonal state of the animal. Differences between the two DA neurone groups exist also with regard to the effects of peptide fragments containing the two active sites of the alpha-MSH molecule. Results of lesion experiments in the lower brainstem (area postrema) and of blockade of muscarinic mechanisms by atropine further point to differences in the mechanisms underlying the peptide effects on the two neurone systems. The reaction of the tubero-infundibular DA system (which controls the pars intermedia of the pituitary) can be considered to reflect the activation of a feedback mechanism on MSH secretion, while the functional counterpart of the changes observed in the nigral system remains unknown at the present time.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

?  Introduction ?  Bone fracture healing and healing problems ?  Biomaterial scaffolds and tissue engineering in bone formation -  Bone tissue engineering -  Biomaterial scaffolds -  Synthetic scaffolds -  Micro- and nanostructural properties of scaffolds -  Conclusion ?  Mesenchymal stem cells and osteogenesis -  Bone tissue -  Origin of osteoblasts -  Isolation and characterization of bone marrow derived MSC -  In vitro differentiation of MSC into osteoblast lineage cells -  In vivo differentiation of MSC into bone -  Factors and pathways controlling osteoblast differentiation of hMSC -  Defining the relationship between osteoblast and adipocyte differentiation from MSC -  MSC and sex hormones -  Effect of aging on osteoblastogenesis -  Conclusion ?  Embryonic, foetal and adult stem cells in osteogenesis -  Cell-based therapies for bone -  Specific features of bone cells needed to be advantageous for clinical use -  Development of therapeutic biological agents -  Clinical application concerns -  Conclusion ?  Platelet-rich plasma (PRP), growth factors and osteogenesis -  PRP effects in vitro on the cells involved in bone repair -  PRP effects on osteoblasts -  PRP effects on osteoclasts -  PRP effects on endothelial cells -  PRP effects in vivo on experimental animals -  The clinical use of PRP for bone repair -  Non-union -  Distraction osteogenesis -  Spinal fusion -  Foot and ankle surgery -  Total knee arthroplasty -  Odontostomatology and maxillofacial surgery -  Conclusion ?  Molecular control of osteogenesis -  TGF-β signalling -  FGF signalling -  IGF signalling -  PDGF signalling -  MAPK signalling pathway -  Wnt signalling pathway -  Hedgehog signalling -  Notch signalling -  Ephrin signalling -  Transcription factors regulating osteoblast differentiation -  Conclusion ?  Summary This invited review covers research areas of central importance for orthopaedic and maxillofacial bone tissue repair, including normal fracture healing and healing problems, biomaterial scaffolds for tissue engineering, mesenchymal and foetal stem cells, effects of sex steroids on mesenchymal stem cells, use of platelet-rich plasma for tissue repair, osteogenesis and its molecular markers. A variety of cells in addition to stem cells, as well as advances in materials science to meet specific requirements for bone and soft tissue regeneration by addition of bioactive molecules, are discussed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

There is growing evidence that consumption of a Western diet is a risk factor for osteoporosis through excess acid supply, while fruits and vegetables balance the excess acidity, mostly by providing K-rich bicarbonate-rich foods. Western diets consumed by adults generate approximately 50-100 mEq acid/d; therefore, healthy adults consuming such a diet are at risk of chronic low-grade metabolic acidosis, which worsens with age as a result of declining kidney function. Bone buffers the excess acid by delivering cations and it is considered that with time an overstimulation of this process will lead to the dissolution of the bone mineral content and hence to reduced bone mass. Intakes of K, Mg and fruit and vegetables have been associated with a higher alkaline status and a subsequent beneficial effect on bone health. In healthy male volunteers an acid-forming diet increases urinary Ca excretion by 74% and urinary C-terminal telopeptide of type I collagen (C-telopeptide) excretion by 19% when compared with an alkali (base-forming) diet. Cross-sectional studies have shown that there is a correlation between the nutritional acid load and bone health measured by bone ultrasound or dual-energy X-ray absorptiometry. Few studies have been undertaken in very elderly women (>75 years), whose osteoporosis risk is very pertinent. The EVAluation of Nutrients Intakes and Bone Ultra Sound Study has developed and validated (n 51) an FFQ for use in a very elderly Swiss population (mean age 80.4 (sd 2.99) years), which has shown intakes of key nutrients (energy, fat, carbohydrate, Ca, Mg, vitamin C, D and E) to be low in 401 subjects. A subsequent study to assess net endogenous acid production (NEAP) and bone ultrasound results in 256 women aged > or = 75 years has shown that lower NEAP (P=0.023) and higher K intake (P=0.033) are correlated with higher bone ultrasound results. High acid load may be an important additional risk factor that may be particularly relevant in very elderly patients with an already-high fracture risk. The latter study adds to knowledge by confirming a positive link between dietary alkalinity and bone health indices in the very elderly. In a further study to complement these findings it has also been shown in a group of thirty young women that in Ca sufficiency an acid Ca-rich water has no effect on bone resorption, while an alkaline bicarbonate-rich water leads to a decrease in both serum parathyroid hormone and serum C-telopeptide. Further investigations need to be undertaken to study whether these positive effects on bone loss are maintained over long-term treatment. Mineral-water consumption could be an easy and inexpensive way of helping to prevent osteoporosis and could be of major interest for long-term prevention of bone loss.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We have shown that a local administration of thyroid hormones (T3) at the level of transected rat sciatic nerve induced a significant increase in the number of regenerated axons. To address the question of whether local administration of T3 rescues the axotomized sensory neurons from death, in the present study we estimated the total number of surviving neurons per dorsal root ganglion (DRG) in three experimental group animals. Forty-five days following rat sciatic nerve transection, the lumbar (L4 and L5) DRG were removed from PBS-control, T3-treated as well as from unoperated rats, and serial sections (1 microm) were cut. The physical dissector method was used to estimate the total number of sensory neurons in the DRGs. Our results revealed that in PBS-control rats transection of sciatic nerve leads to a significant (P < 0.001) decrease in the mean number of sensory neurons (8743.8 +/- 748.6) compared with the number of neurons in nontransected ganglion (mean 13,293.7 +/- 1368.4). However, administration of T3 immediately after sciatic nerve transection rescues a great number of axotomized neurons so that their mean neuron number (12,045.8 +/- 929.8) is not significantly different from the mean number of neurons in the nontransected ganglion. In addition, the volume of ganglia showed a similar tendency. These results suggest that T3 rescues a high number of axotomized sensory neurons from death and allows these cells to grow new axons. We believe that the relative preservation of neurons is important in considering future therapeutic approaches of human peripheral nerve lesion and sensory neuropathy.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

BACKGROUND: Renal calcium stones and hypercalciuria are associated with a reduced bone mineral density (BMD). Therefore, the effect of changes in calcium homeostasis is of interest for both stones and bones. We hypothesized that the response of calciuria, parathyroid hormone (PTH) and 1.25 vitamin D to changes in dietary calcium might be related to BMD. METHODS: A single-centre prospective interventional study of 94 hyper- and non-hypercalciuric calcium stone formers consecutively retrieved from our stone clinic. The patients were investigated on a free-choice diet, a low-calcium diet, while fasting and after an oral calcium load. Patient groups were defined according to lumbar BMD (z-score) obtained by dual X-ray absorptiometry (group 1: z-score <-0.5, n = 30; group 2: z-score -0.5-0.5, n = 36; group 3: z-score >0.5, n = 28). The effect of the dietary interventions on calciuria, 1.25 vitamin D and PTH in relation to BMD was measured. RESULTS: An inverse relationship between BMD and calciuria was observed on all four calcium intakes (P = 0.009). On a free-choice diet, 1.25 vitamin D and PTH levels were identical in the three patient groups. However, the relative responses of 1.25 vitamin D and PTH to the low-calcium diet were opposite in the three groups with the highest increase of 1.25 vitamin D in group 1 and the lowest in group 3, whereas PTH increase was most pronounced in group 3 and least in group 1. CONCLUSION: Calcium stone formers with a low lumbar BMD exhibit a blunted response of PTH release and an apparently overshooting production of 1.25 vitamin D following a low-calcium diet.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

OBJECTIVES: Calcium-sensing receptors (CaSRs) have been localized in the juxtaglomerular apparatus where they may contribute to the regulation of renin release. In the present study, we investigated the in-vitro and in-vivo effects of the calcimimetic R-568 on renin release. METHODS: In vitro, the effect of calcimimetics on renin release was assessed by incubating freshly isolated rat juxtaglomerular cells with or without R-568 (1 and 10 mumol/l) in serum-free medium in the presence or absence of forskolin or CaCl2. In vivo, we measured the impact of R-568 (20 ng/min intravenously) on the acute changes in plasma renin activity (PRA) induced by either a 90 min infusion of the angiotensin-converting enzyme inhibitor captopril, or the beta-receptor agonist isoproterenol, or of a vehicle in or after a furosemide challenge in conscious Wistar rats. RESULTS: In vitro, R-568 dose-dependently blunted renin release, but also reduced the increase in renin due to forskolin (P < 0.01). Both isoproterenol and enalapril increased in vivo PRA to 3.1 +/- 0.3 and 3.7 +/- 0.5 ng Ang I/ml per h, respectively (P < 0.01), compared with vehicle (1.5 +/- 0.2 ng Ang I/ml per h). R-568 significantly reduced PRA to 2.1 +/- 0.1 ng/ml per h in isoproterenol-treated rats and to 1.6 +/- 0.2 ng/ml per h in enalapril-treated rats (P < 0.05). In low-salt treated animals, acute infusion of furosemide increased PRA from 8.7 +/- 3.2 to 18.6 +/- 2.3, whereas R-568 partially blunted this rise to 11.2 +/- 1.5 (P = 0.02). In vivo, R-568 significantly lowered serum calcium and PTH1-84, but the drug-induced changes in PRA were independent of the changes in calcium and parathyroid hormone. CONCLUSION: After the recent discovery of CaSRs in juxtaglomerular cells of mice, our results confirm the presence of such receptors in rats and demonstrate that these receptors modulate renin release both in vitro and in vivo. This suggests that CaSRs play a role as a regulatory pathway of renin release.