341 resultados para Orthogonal Activation Functions


Relevância:

20.00% 20.00%

Publicador:

Resumo:

OBJECTIVE It has been suggested that interleukin (IL)-6 is one of the mediators linking obesity-derived chronic inflammation with insulin resistance through activation of STAT3, with subsequent upregulation of suppressor of cytokine signaling 3 (SOCS3). We evaluated whether peroxisome proliferator-activated receptor (PPAR)-β/-δ prevented activation of the IL-6-STAT3-SOCS3 pathway and insulin resistance in adipocytes. RESEARCH DESIGN AND METHODS First, we observed that the PPAR-β/-δ agonist GW501516 prevented both IL-6-dependent reduction in insulin-stimulated Akt phosphorylation and glucose uptake in adipocytes. In addition, this drug treatment abolished IL-6-induced SOCS3 expression in differentiated 3T3-L1 adipocytes. This effect was associated with the capacity of the drug to prevent IL-6-induced STAT3 phosphorylation on Tyr(705) and Ser(727) residues in vitro and in vivo. Moreover, GW501516 prevented IL-6-dependent induction of extracellular signal-related kinase (ERK)1/2, a serine-threonine-protein kinase involved in serine STAT3 phosphorylation. Furthermore, in white adipose tissue from PPAR-β/-δ-null mice, STAT3 phosphorylation (Tyr(705) and Ser(727)), STAT3 DNA-binding activity, and SOCS3 protein levels were higher than in wild-type mice. Several steps in STAT3 activation require its association with heat shock protein 90 (Hsp90), which was prevented by GW501516 as revealed in immunoprecipitation studies. Consistent with this finding, the STAT3-Hsp90 association was enhanced in white adipose tissue from PPAR-β/-δ-null mice compared with wild-type mice. CONCLUSIONS Collectively, our findings indicate that PPAR-β/-δ activation prevents IL-6-induced STAT3 activation by inhibiting ERK1/2 and preventing the STAT3-Hsp90 association, an effect that may contribute to the prevention of cytokine-induced insulin resistance in adipocytes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

J. Neurochem. (2010) 10.1111/j.1471-4159.2010.06935.x Abstract Apart of its well known function of 'energetic buffer' through the creatine/phosphocreatine/creatine kinase system allowing the regeneration of ATP, creatine has been recently suggested as a potential neuromodulator of even true neurotransmitter. Moreover, the recent discovery of primary creatine deficiency syndromes, due to deficiencies in l-arginine : glycine amidinotransferase or guanidinoacetate methyltransferase (the two enzymes allowing creatine synthesis) or in the creatine transporter, has shed new light on creatine synthesis, metabolism and transport, in particular in CNS which appears as the main tissue affected by these creatine deficiencies. Recent data suggest that creatine can cross blood-brain barrier but only with a poor efficiency, and that the brain must ensure parts of its needs in creatine by its own endogenous synthesis. Finally, the recent years have demonstrated the interest to use creatine as a neuroprotective agent in a growing number of neurodegenerative diseases, including Parkinson's and Huntington's diseases. This article aims at reviewing the latest data on creatine metabolism and transport in the brain, in relation to creatine deficiencies and to the potential use of creatine as neuroprotective molecule. Emphasis is also given to the importance of creatine for cerebral function.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Peroxisome proliferator-activated receptors (PPARs) compose a family of three nuclear receptors which act as lipid sensors to modulate gene expression. As such, PPARs are implicated in major metabolic and inflammatory regulations with far-reaching medical consequences, as well as in important processes controlling cellular fate. Throughout this review, we focus on the cellular functions of these receptors. The molecular mechanisms through which PPARs regulate transcription are thoroughly addressed with particular emphasis on the latest results on corepressor and coactivator action. Their implication in cellular metabolism and in the control of the balance between cell proliferation, differentiation and survival is then reviewed. Finally, we discuss how the integration of various intra-cellular signaling pathways allows PPARs to participate to whole-body homeostasis by mediating regulatory crosstalks between organs.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this chapter we summarize some aspects of the structure-functional relationship of the alpha 1a and alpha 1b-adrenergic receptor subtypes related to the receptor activation process as well as the effect of different alpha-blockers on the constitutive activity of the receptor. Molecular modeling of the alpha 1a and alpha 1b-adrenergic receptor subtypes and computational simulation of receptor dynamics were useful to interpret the experimental findings derived from site directed mutagenesis studies.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Overexpression of the tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL) receptors, TRAIL-R1 and TRAIL-R2, induces apoptosis and activation of NF-kappaB in cultured cells. In this study, we have demonstrated differential signaling capacities by both receptors using either epitope-tagged soluble TRAIL (sTRAIL) or sTRAIL that was cross-linked with a monoclonal antibody. Interestingly, sTRAIL was sufficient for induction of apoptosis only in cell lines that were killed by agonistic TRAIL-R1- and TRAIL-R2-specific IgG preparations. Moreover, in these cell lines interleukin-6 secretion and NF-kappaB activation were induced by cross-linked or non-cross-linked anti-TRAIL, as well as by both receptor-specific IgGs. However, cross-linking of sTRAIL was required for induction of apoptosis in cell lines that only responded to the agonistic anti-TRAIL-R2-IgG. Interestingly, activation of c-Jun N-terminal kinase (JNK) was only observed in response to either cross-linked sTRAIL or anti-TRAIL-R2-IgG even in cell lines where both receptors were capable of signaling apoptosis and NF-kappaB activation. Taken together, our data suggest that TRAIL-R1 responds to either cross-linked or non-cross-linked sTRAIL which signals NF-kappaB activation and apoptosis, whereas TRAIL-R2 signals NF-kappaB activation, apoptosis, and JNK activation only in response to cross-linked TRAIL.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A cause and effect relationship between arterial hypertension and decline of cognitive function has long been suspected. In middle-age subjects indeed, an abnormally high blood pressure is a risk factor for the long-term development of dementia. Presently, it seems crucial to treat hypertensive patients in order to better protect them against cognitive decline. However, in the elderly patients the risk of mental deterioration may also be enhanced when diastolic pressure becomes too low, for example below 70 mmHg. Further studies are required to better define the antihypertensive drug regimen and target blood pressure which would be optimal for the prevention of cerebral small vessel disease.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Redox-based mechanisms play critical roles in the regulation of multiple cellular functions. NF-kappaB, a master regulator of inflammation, is an inducible transcription factor generally considered to be redox-sensitive, but the modes of interactions between oxidant stress and NF-kappaB are incompletely defined. Here, we show that oxidants can either amplify or suppress NF-kappaB activation in vitro by interfering both with positive and negative signals in the NF-kappaB pathway. NF-kappaB activation was evaluated in lung A549 epithelial cells stimulated with tumor necrosis factor alpha (TNFalpha), either alone or in combination with various oxidant species, including hydrogen peroxide or peroxynitrite. Exposure to oxidants after TNFalpha stimulation produced a robust and long lasting hyperactivation of NF-kappaB by preventing resynthesis of the NF-kappaB inhibitor IkappaB, thereby abrogating the major negative feedback loop of NF-kappaB. This effect was related to continuous activation of inhibitor of kappaB kinase (IKK), due to persistent IKK phosphorylation consecutive to oxidant-mediated inactivation of protein phosphatase 2A. In contrast, exposure to oxidants before TNFalpha stimulation impaired IKK phosphorylation and activation, leading to complete prevention of NF-kappaB activation. Comparable effects were obtained when interleukin-1beta was used instead of TNFalpha as the NF-kappaB activator. This study demonstrates that the influence of oxidants on NF-kappaB is entirely context-dependent, and that the final outcome (activation versus inhibition) depends on a balanced inhibition of protein phosphatase 2A and IKK by oxidant species. Our findings provide a new conceptual framework to understand the role of oxidant stress during inflammatory processes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BTLA (B- and T-lymphocyte attenuator) is a prominent co-receptor that is structurally and functionally related to CTLA-4 and PD-1. In T cells, BTLA inhibits TCR-mediated activation. In B cells, roles and functions of BTLA are still poorly understood and have never been studied in the context of B cells activated by CpG via TLR9. In this study, we evaluated the expression of BTLA depending on activation and differentiation of human B cell subsets in peripheral blood and lymph nodes. Stimulation with CpG upregulated BTLA, but not its ligand: herpes virus entry mediator (HVEM), on B cells in vitro and sustained its expression in vivo in melanoma patients after vaccination. Upon ligation with HVEM, BTLA inhibited CpG-mediated B cell functions (proliferation, cytokine production, and upregulation of co-stimulatory molecules), which was reversed by blocking BTLA/HVEM interactions. Interestingly, chemokine secretion (IL-8 and MIP1β) was not affected by BTLA/HVEM ligation, suggesting that BTLA-mediated inhibition is selective for some but not all B cell functions. We conclude that BTLA is an important immune checkpoint for B cells, as similarly known for T cells.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Résumé Les mécanismes de régulation de la réabsorption fine du sodium dans la partie distale (tube distal et tube collecteur) du néphron ont un rôle essentiel dans le maintien de l'homéostasie de la composition ionique et du volume des fluides extracellulaires. Ces mécanismes permettent le maintien de la pression sanguine. Dans la cellule principale du tube collecteur cortical (CCD), le taux de réabsorption de sodium dépend essentiellement de l'activité du canal épithélial à sodium (ENaC) à la membrane apicale et de la pompe sodium-potassium-adénosine-triphosphatase (Na+-K±ATPase) à la membrane basolatérale. L'activité de ces deux molécules de transport est en partie régulée par des hormones dont l'aldostérone, la vasopressine et l'insuline. Dans les cellules principales de CCD, la vasopressine régule le transport de sodium en deux étapes : une étape précoce dite « non-génomique » et une étape tardive dite « génotnique ». Durant l'étape précoce, la vasopressine régule l'expression de gènes, dont certains peuvent être impliqués dans le transport de sodium, comme ENaC et la Na+ -K+ATP ase. Le but de mon travail a été d'étudier l'implication d'une protéine appelée VIP32 (vasopressin induced protein : VIP) dans le transport de sodium. L'expression de VIP32 est augmentée par la vasopressine dans les cellules principales de CCD. Dans l'ovocyte de Xenopus laevis utilisé comme système d'expression hétérologue, nous avons montré que l'expression de VIP32 provoque la maturation méiotique de l'ovocyte par l'activation de la voie des MAPK (mitogen-activated protein kinase : MAPK) et du facteur de promotion méiotique (MPF). La co-expression d'ENaC et de VIP32 diminue l'activité d'ENaC de façon sélective, par l'activation de la voie des MAPK, sans affecter l'expression du canal à la surface membranaire. Nous avons également montré que la régulation de l'activité d'ENaC par la voie des MAPK est dépendante du mécanisme de régulation d'ENaC lié à un motif du canal appelé PY. Ce motif est impliqué dans le contrôle de la probabilité d'ouverture ainsi que l'expression à la surface membranaire d'ENaC. Dans les cellules principales, VIP32 par l'activation de la voie des MAPK peut être impliqué dans la régulation négative du transport transépithélial qui a lieu après plusieurs heures de traitement à la vasopressine. Le tube collecteur de reins normaux présente un taux basal significatif d'activité de la voie MAPK MEK1/2-ERK1/2. Dans la lignée mpkCCDc14 de cellules principales de CCD de souris, que nous avons utilisé pour cette partie du travail, nous avons montré la présence d'un taux basal d'activité d'ERK1/2 (pERK1/2). L'aldostérone et la vasopressine, connus pour stimuler le courant sodique transépithélial dans le CCD, ne changeaient pas le taux basal de pERK1/2. Le transport de sodium transépithélial basal, ou stimulé par l'aldostérone ou la vasopressine est diminué par l'effet de PD98059, un inhibiteur de MEK1/2 qui diminue parallèlement le taux de pERK1/2. Nous avons également montré dans des cellules non stimulées, ou stimulées par de l'aldostérone ou de la vasopressine, que l'activité de la Na+-K+ ATPase, mais pas celle d'ENaC est inhibée par des traitements avec différents inhibiteurs de MEK1/2. Par un marquage de la Na±-K+ATPase à la surface membranaire nous avons montré que la voie d'ERK1/2 contrôle l'activité intrinsèque de la Na+-K+ ATPase, plutôt que son expression à la surface membranaire. Ces données ont montré que l'activité de la Na+-K+ATPase et le transport transépithélial de sodium sont contrôlés par l'activité basal et constitutive de la voie d'ERK1/2. Summary The regulation of sodium reabsorption in the distal nephron (distal tubule and cortical collecting duct) in the kidney plays an essential role in the control of extracellular fluids composition and volume, and thereby blood pressure. In the principal cell of the collecting duct (CCD), the level of sodium reabsorption mainlly depends on the activity of both epithlial sodium channel (ENaC) and sodium-potassium-adenosine-triphosphatase (Na+-K+ATPase). The activity of these two transporters is regulated by hormones especially aldosterone, vasopressin and insuline.In the principal cell of the CCD, vasopressin regulates sodium transport via a short-term effect and a late genomic effect. During the genomic effect vasopressin activates a complex network of vasopressin-dependent genes involved in the regulation of sodium transport as ENaC and Na+-K+ATPase. We were interested in the role of a recently identified vasopressin induced protein (VIP32) and its implication in the regulation of sodium transport in principal cell of the CCD. The Xenopus oocyte expression system revealed two functions : expressed alone VIP32 rapidly induces oocyte meiotic maturation through the activation of the mitogen-activated protein kinase (MAPK) pathway and the meiotic promoting factor and when co-expressed with ENaC, V1P32 selectively dowrn-egulates channel activity, but not channel cell surface expression. We have shown that the ENaC downregulation mediated by the activation of the MAPK pathway is related to the PY motif of ENaC. This motif is implicated in ENaC cell surface expression and open probability regulation. In the kidney principal cell, VIP32 through the activation of MAPK pathway may be involved in the downregulation of transepithelial sodium transport observed within a few hours after vasopressin treatment. The collecting duct of normal kidney exhibits significant activity of the MEK1/2-ERK1/2 MAPK pathway. Using in vitro cultured mpkCCDc14 principal cells we have shown a significant basal level of ERK1/2 activity (pERK1/2). Aldosterone and vasopressin, known to upregulate sodium reabsorption in CCDs, did not change ERK1/2 activity. Basal and aldosterone- or vasopressin-stimulated sodium transport were downregulated by the MEK1/2 inhibitor PD98059 in parallel with a decrease in pERK1/2 in vitro. The activity of Na+-K+ATPase but not that of ENaC was inhibited by MEK1/2 inhibitors in both, unstimulated and aldosterone- or vasopressin-stimulated CCDs in vitro. Cell surface labelling showed that intrinsic activity rather than cell surface expression of Na+-K+ATPase was controlled by pERK1/2. Our data demonstrate that basal constitutive activity of ERK1/2 pathway controls Na+-K+ATPase activity and transepithelial sodium transport in the principal cell. Résumé tout public Les mécanismes de régulation de la réabsorption fine du sodium dans la partie distale du néphron (l'unité fonctionnelle du rein) ont un rôle essentiel dans le maintien de l'homéostasie de la composition et du volume des fluides extracellulaires. Ces mécanismes permettent de maintenir une pression sanguine effective. Dans les cellules principales du tube collecteur, une région spécifique du néphron distal, le transport de sodium dépend essentiellement de l'activité de deux transporteurs de sodium : le canal épithélial à sodium (ENaC) et la pompe sodium-potassium-adénosine-triphosphatase (Na+-K+ATPase). Afin de répondre aux besoins de l'organisme, l'activité de ces deux molécules de transport est en partie régulée par des hormones dont l'aldostérone, la vasopressine et l'insuline. Dans les cellules principales du tube collecteur, la vasopressine régule le transport de sodium en deux étapes : une étape rapide et une étape lente dite « génomique ». Durant l'étape lente, la vasopressine régule l'expression de gènes pouvant être impliqués dans le transport de sodium, dont notamment ceux d'ENaC et de la Na+-K+ATPase. Parmi les gènes dont l'expression est augmentée par la vasopressine, celui de VIP32 (vasopressin induced protein : VIP) fait l'objet de cette étude. Le but de mon travail a été d'étudier, dans un système d'expression hétérologue (l'ovocyte de Xenopus leavis), l'implication de VIP32 dans le transport de sodium. Nous avons montré que VIP32 est capable d'activer un mécanisme moléculaire en cascade appelé MAPK (mitogen-activated protein kinase : MAPK) et est aussi capable de diminuer l'activité d'ENaC. Parallèlement, dans une lignée de cellules principales de tube collecteur les mpkCCDc14, nous avons montré que le taux basal d'activité de la cascade MAPK est capable de réguler l'activité de la Na+-K+ATPase, tandis qu'il n'influence pas l'activité d'ENaC.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Résumé Rôle du transporteur de glucose GLUT2 dans les mécanismes centraux de glucodétection impliqués dans le contrôle de la sécrétion du glucagon et de la prise alimentaire. Les mécanismes centraux de glucodétection jouent un rôle majeur dans le contrôle de l'homéostasie glucidique. Ces senseurs régulent principalement la sécrétion des hormones contre-régulatrices, la prise alimentaire et la dépense énergétique. Cependant, la nature cellulaire et le fonctionnement moléculaire de ces mécanismes ne sont encore que partiellement élucidés. Dans cette étude, nous avons tout d'abord mis en évidence une suppression de la stimulation de la sécrétion du glucagon et de la prise alimentaire en réponse à une injection intracérébroventriculaire (i.c.v.) de 2-déoxy-D-glucose (2-DG) chez les souris de fond génétique mixte et déficientes pour le gène glut2 (souris RIPG1xglut2-/-). De plus, chez ces souris, l'injection de 2-DG n'augmente pas l'activation neuronale dans l'hypothalamus et le complexe vagal dorsal. Nous avons ensuite montré que la ré-expression de GLUT2 dans les neurones des souris RIPG1xg1ut2-/- ne restaure pas la sécrétion du glucagon et la prise alimentaire en réponse à une injection i.c.v. de 2-DG. En revanche, l'injection de 2-DG réalisée chez les souris RIPG1xg1ut2-/- ré-exprimant le GLUT2 dans leurs astrocytes, stimule la sécrétion du glucagon et l'activation neuronale dans le complexe vagal dorsal mais n'augmente pas la prise alimentaire ni l'activation neuronale dans l'hypothalamus. L'ensemble de ces résultats démontre l'existence de différents mécanismes centraux de glucodétection dépendants de GLUT2. Les mécanismes régulant la sécrétion du glucagon sont dépendants de GLUT2 astrocytaire et pourraient être localisés dans le complexe vagal dorsal. L'implication des astrocytes dans ces mécanismes suggère un couplage fonctionnel entre les astrocytes et les neurones adjacents « sensibles au glucose ». Lors de cette étude, nous avons remarqué chez les souris RIPG1xg1ut2-/- de fond génétique pur C57B1/6, que seul le déclenchement de la prise alimentaire en réponse à l'injection i.p. ou i.c.v. de 2-DG est aboli. Ces données mettent en évidence que suivant le fond génétique de la souris, les mécanismes centraux de glucodétection impliqués dans la régulation de la sécrétion peuvent être indépendants de GLUT2. Summary. Role of transporter GLUT2 in central glucose sensing involved in the control of glucagon secretion and food intake. Central glucose sensors play an important role in the control of glucose homeostasis. These sensors regulate general physiological functions, including food intake, energy expenditure and hormones secretion. So far the cellular and molecular basis of central glucose detection are poorly understood. Hypoglycemia, or cellular glucoprivation by intraperitoneal injection of 2-deoxy¬glucose (2-DG) injection, elicit multiple glucoregulatory responses, in particular glucagon secretion and stimulation of feeding. We previously demonstrated that the normal glucagon response to insulin-induced hypoglycemia was suppressed in mice lacking GLUT2. This indicated the existence of extra-pancreatic, GLUT2-dependent, glucose sensors controllling glucagon secretion. Here, we have demonstrated that the normal glucagon and food intake responses to central glucoprivation, by intracerebroventricular (i.c.v.) injections of 2-DG, were suppressed in mice lacking GLUT2 (RIPG1xglut2-/- mice) indicating that GLUT2 plays a role in central glucose sensing units controlling secretion of glucagon and food intake. Whereas it is etablished that glucose responsive neurons change their firing rate in response to variations of glucose concentrations, the exact mechanism of glucose detection is not established. In particular, it has been suggested that astrocytic cells may be the primary site of glucose detection and that a signal is subsequently transmitted to neurons. To evaluate the respective role of glial and neuronal expression of GLUT2 in central glucodetection, we studied hypoglycemic and glucoprivic responses following cellular glucoprivation in RIPG1xglut2-/- mice reexpressing the transgenic GLUT2 specifially in their astrocytes (pGFAPG2xRIPG1xglut2-/- mice) or their neurons (pSynG2xRIPG1xglut2-/- mice). The increase of food intake after i.p. injection of 2-DG in control mice was not observed in the pGFAPG2xRIPG1xglut2-/- mice. Whereas a strong increase of glucagon secretion was observed in control and pGFAPG2xRIPG1xglut2-/- mice, not glucagonemic response was induced in pSynG2xRIPG1xglut2-/- mice. Our results show that GLUT2 reexpression in glial cells but not in neurons restored glucagon secretion and thus present a strong evidence that glucose detection and the control of glucagon secretion require a coupling between glial cells and neurons. Furthermore, these results show the existence of differents glucose sensors in CNS. Résumé tout public. Rôle du transporteur de glucose GLUT2 dans les mécanismes centraux de glucodétection impliqués dans le contrôle de la sécrétion du glucagon et de la prise alimentaire. Chez les mammifères, en dépit des grandes variations dans l'apport et l'utilisation du glucose, la glycémie est maintenue à une valeur relativement constante d'environ 1 g/l. Cette régulation est principalement sous le contrôle de deux hormones produites par le pancréas l'insuline et le glucagon. A la suite d'un repas, la détection de l'élévation de la glycémie par le pancréas permet la libération pancréatique de l'insuline dans le sang. Cette hormone va alors permettre le stockage dans le foie du glucose sanguin en excès et diminuer ainsi la glycémie. Sans insuline, le glucose s'accumule dans le sang. On parle alors d'hyperglycémie chronique. Cette situation est caractéristique du diabète et augmente les risques de maladies cardiovasculaires. A l'inverse, lors d'un jeûne, la détection de la diminution de la glycémie par le cerveau permet le déclenchement de la prise alimentaire et stimule la sécrétion de glucagon par le pancréas. Le glucagon va alors permettre la libération dans le sang du glucose stocké par le foie. Les effets du glucagon et de la prise de nourriture augmentent ainsi les concentrations sanguines de glucose pour empêcher une diminution trop importante de la glycémie. Une hypoglycémie sévère peut entraîner un mauvais fonctionnement du cerveau allant jusqu'à des lésions cérébrales. Contrairement aux mécanismes pancréatiques de détection du glucose, les mécanismes de glucodétection du cerveau ne sont encore que partiellement élucidés. Dans le laboratoire, nous avons observé, chez les souris transgéniques n'exprimant plus le transporteur de glucose GLUT2, une suppression de la stimulation de la sécrétion du glucagon et du déclenchement de la prise alimentaire en réponse à une hypoglycémie, induite uniquement dans le cerveau. Dans le cerveau, le GLUT2 est principalement exprimé par les astrocytes, cellules gliales connues pour soutenir, nourrir et protéger les neurones. Nous avons alors ré-exprimé spécifiquement le GLUT2 dans les astrocytes des souris transgéniques et nous avons observé que seule la stimulation de la sécrétion du glucagon en réponse à l'hypoglycémie est restaurée. Ces résultats mettent en évidence que la sécrétion du glucagon et la prise alimentaire sont contrôlées par différents mécanismes centraux de glucodétection dépendants de GLUT2.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

RESUME Introduction : Dans le coeur adulte, l'ischémie et la reperfusion entraînent des perturbations électriques, mécaniques, biochimiques et structurales qui peuvent causer des dommages réversibles ou irréversibles selon la sévérité de l'ischémie. Malgré les récents progrès en cardiologie et en chirurgie foetales, la connaissance des mécanismes impliqués dans la réponse du myocarde embryonnaire à un stress hypoxique transitoire demeure lacunaire. Le but de ce travail a donc été de caractériser les effets chrono-, dromo- et inotropes de l'anoxie et de la réoxygénation sur un modèle de coeur embryonnaire isolé. D'autre part, les effets du monoxyde d'azote (NO) et de la modulation des canaux KATP mitochondriaux (mito KATP) sur la récupération fonctionnelle postanoxique ont été étudiés. La production myocardique de radicaux d'oxygène (ROS) et l'activité de MAP Kinases (ERK et JNK) impliquées dans la signalisation cellulaire ont également été déterminées. Méthodes : Des coeurs d'embryons de poulet âgés de 4 jours battant spontanément ont été placés dans une chambre de culture puis soumis à une anoxie de 30 min suivie d'une réoxygénation de 60 min. L'activité électrique (ECG), les contractions de l'oreillette, du ventricule et du conotroncus (détectées par photométrie), la production de ROS (mesure de la fluorescence du DCFH) et l'activité kinase de ERK et JNK dans le ventricule ont été déterminées au cours de l'anoxie et de la réoxygénation. Les coeurs ont été traités avec un bloqueur des NO synthases (L-NAME), un donneur de NO (DETA-NONOate), un activateur (diazoxide) ou un inhibiteur (5-HD) des canaux mitoKATP un inhibiteur non-spécifique des PKC (chélérythrine) ou un piégeur de ROS (MPG). Résultats : L'anoxie et la réoxygénation entraînaient des arythmies (essentiellement d'origine auriculaire) semblables à celles observées chez l'adulte, des troubles de la conduction (blocs auriculo-ventriculaires de 1er, 2ème et 3ème degré) et un ralentissement marqué du couplage excitation-contraction (E-C) ventriculaire. En plus de ces arythmies, la réoxygénation déclenchait le phénomène de Wenckelbach, de rares échappements ventriculaires et une sidération myocardique. Aucune fibrillation, conduction rétrograde ou activité ectopique n'ont été observées. Le NO exogène améliorait la récupération postanoxique du couplage E-C ventriculaire alors que L'inhibition des NOS la ralentissait. L'activation des canaux mito KATP augmentait la production mitochondriale de ROS à la réoxygénation et accélérait la récupération de la conduction (intervalle PR) et du couplage E-C ventriculaire. La protection de ce couplage était abolie par le MPG, la chélérythrine ou le L-NAME. Les fonctions électrique et contractile de tous les coeurs récupéraient après 30-40 min de réoxygénation. L'activité de ERK et de JNK n'était pas modifiée par L'anoxie, mais doublait et quadruplait, respectivement, après 30 min de réoxygénation. Seule l'activité de JNK était diminuée (-60%) par l'activation des canaux mitoKATP. Cet effet inhibiteur était partiellement abolit par le 5-HD. Conclusion: Dans le coeur immature, le couplage E-C ventriculaire semble être un paramètre particulièrement sensible aux conditions d'oxygénation. Sa récupération postanoxique est améliorée par l'ouverture des canaux mitoKATP via une signalisation impliquant les ROS Ies PKC et le NO. Une réduction de l'activité de JNK semble également participer à cette protection. Nos résultats suggèrent que les mitochondries jouent un rôle central dans la modulation des voies de signalisation cellulaire, en particulier lorsque les conditions métaboliques deviennent défavorables. Le coeur embryonnaire isolé représente donc un modèle expérimental utile pour mieux comprendre les mécanismes associés à une hypoxie in utero et pour améliorer les stratégies thérapeutiques en cardiologie et chirurgie foetales. ABSTRACT Physiopathology of the anoxic-reoxygenated embryonic heart: Protective role of NO and KATP channel Aim: In the adult heart, the electrical, mechanical, biochemical and structural disturbances induced by ischemia and reperfusion lead to reversible or irreversible damages depending on the severity and duration of ischemia. In spite of recent advances in fetal cardiology and surgery, little is known regarding the cellular mechanisms involved in hypoxia-induced dysfunction in the developing heart. The aim of this study was to precisely characterize the chrono-, dromo- and inotropic disturbances associated with anoxia-reoxygenation in an embryonic heart model. Furthermore, the roles that nitric oxide (NO), reactive oxygen species (ROS), mitochondrial KATP, (mito KATP) channel and MAP Kinases could play in the stressed developing heart have been investigated. Methods: Embryonic chick hearts (4-day-old) were isolated and submitted in vitro to 30 min anoxia followed by 60 min reoxygenation. Electrical (ECG) and contractile activities of atria, ventricle and conotruncus (photometric detection), ROS production (DCFH fluorescence) and ERK and JNK activity were determined in the ventricle throughout anoxia-reoxygenation. Hearts were treated with NO synthase inhibitor (L-NAME), NO donor (DETA-NONOate), mitoKATP channel opener (diazoxide) or blocket (5-HD), PKC inhibitor (chelerythrine) and ROS scavenger (MPG). Results: Anoxia and reoxygenation provoked arrhythxnias (mainly originating from atrial region), troubles of conduction (st, 2nd, and 3rd degree atrio-ventricular blocks) and disturbances of excitation-contraction (E-C) coupling. In addition to these types of arrhythmias, reoxygenation triggered Wenckebach phenomenon and rare ventricular escape beats. No fibrillations, no ventricular ectopic beats and no electromechanical dissociation were observed. Myocardial stunning was observed during the first 30 min of reoxygenation. All hearts fully recovered their electrical and mechanical functions after 30-40 min of reoxygenation. Exogenous NO improved while NOS inhibition delayed E-C coupling recovery. Mito KATP, channel opening increased reoxygenation-induced ROS production and improved E-C coupling and conduction (PR) recovery. MPG, chelerythrine or L-NAME reversed this effect. Reoxygenation increased ERK and JNK activities land 4-fold, respectively, while anoxia had no effect. MitoKATP channel opening abolished the reoxygenation-induced activation of JNK but had no effect on ERK activity. This inhibitory effect was partly reversed by mitoKATP channel blocker but not by MPG. Conclusion: In the developing heart, ventricular E-C coupling was found to be specially sensitive to hypoxia-reoxygenation and its postanoxic recovery was improved by mitoKATP channel activation via a ROS-, PKC- and NO-dependent pathway. JNK inhibition appears to be involved in this protection. Thus, mitochondria can play a pivotal role in the cellular signalling pathways, notably under critical metabolic conditions. The model of isolated embryonic heart appears to be useful to better understand the mechanisms underlying the myocardial dysfunction induced by an in utero hypoxia and to improve therapeutic strategies in fetal cardiology and surgery.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Résumé : Le virus tumoral de la glande mammaire de la souris (MMTV) est un rétrovirus provoquant le développement de tumeurs dans les glandes mammaires des souris susceptibles femelles. Au cours de son évolution, le virus s'est adapté et s'exprime dans des cellules spécialisées. Les lymphocytes B sont les premières cellules infectées et elles sont essentielles pour la propagation de l'infection aux glandes mammaires. Dans notre étude, le virus MMTV a été utilisé afin d'examiner les voies de signalisation induites par les glucocorticoïdes (dexaméthasone (dex), une hormone stéroïdienne) et le transforming growth factor-f3 (TGF-P, une cytokine), deux molécules impliquées dans l'activation de la transcription à partir du promoteur du MMTV dans les cellules B. Le TGF-P seul n'influence pas l'activité du promoteur du MMTV. Par contre, en synergie avec dex, le TGF-P provoque une super-induction de l'expression du promoteur par rapport à une stimulation par le glucocorticoïde seul. Cette super-induction est régulée par une famille de protéines, les Smads. Ainsi, dans les lymphocytes B, l'utilisation du MMTV a permis de mettre en évidence une nouvelle synergie entre les glueocortieoïdes et le TGF-p. pans ce travail, l'utilisation d'inhibiteurs pharmacologiques et de mutants « dominant-négatifs » nous a pet mis de démontrer qu'une Protéine Kinase C delta (PKC5) active est impliquée dans la transduction du signal lors de la réponse au dex ainsi que celle au TGF-P. Néanmoins, la PKC5 est régulée différemment dans chaque voie spécifique : la voie du TGF-p nécessitait l'activation du PKC5 par diacylglycerol (DAG) et la phosphorylation de tyrosines spécifiques, alors que la voie impliquant les glucocorticoïdes ne le nécessitait pas. Nous avons aussi démontré qu'une tyrosine kinase de la famille Src est responsable de la phosphorylation des tyrosines sur la PKC5. Les essais de kinase in vitro nous ont permis de découvrir que plusieurs Src kinases peuvent phosphoryler la PKC6 dans les cellules B et qu'elles étaient constitutivement actives. Enfin, nous avons montré qu'il existe une interaction protéine - protéine induite par dex, entre le récepteur aux glucocorticoïdes (GR) et la PKC5 dans les cellules B, une association qui n'a pas été démontrée auparavant. Par ailleurs, nous avons analysé les domaines d'interactions entre PKC5 et GR en utilisant les essais de «GST pull-down». Nos résultats montrent que le domaine régulateur de la PKC5 et celui qui interagit avec l'ADN du GR sont impliqués. En résumé, nous avons trouvé que dans une lignée lymphocytaire B, le virus MMTV utilise des mécanismes pour réguler à la fois la transcription et la voie de signalisation qui sont différents de ceux utilisés dans les cellules mammaires épithéliales et les fibroblastes. Nos découvertes pourraient être utilisées comme modèles pour l'étude de gènes cellulaires impliqués dans des processus tels qu'inflammation, immunité ou cancérogénèse. Summary: Mouse Mammary Tumor Virus (MMTV) is a retrovirus that causes tumors in the mammary glands of susceptible female mice and has adapted evolutionarily to be expressed in specialized cells. The B lymphocytes are the first cells to be infected by the MMTV and are essential for the spread of infection to the mammary glands. Here, we used the MMTV as a model system to investigate the signalling cascade induced by giucocorticoids (dexamethasone, "dex", a steroid hormone), and by Transforming Growth Factor-beta (TGF-P, a cytokine) leading to its transcriptional activation in B lymphocytes. By itself, TGF-I3 does not affect the basal activity of the MMTV promoter. However, TGF-13 significantly increases glucocorticoid-induced expression, through its effectors, the Smad factors. Thus, MMTV in B cells demonstrates a novel synergism between glucocorticoids and TGF-16. In this thesis project, we present evidence, based on the use of pharmacological inhibitors and of dominant-negative mutants, that an active Protein Kinase C delta (PKC6) is required as a signal transducer for the dex response and for the TGF-P superinduction as well. The PKC6 is differentially regulated in each specific pathway: whereas the TGF-13 superinduction required PKC6 to be activated by diacylglycerol (DAG) and to be phosphorylated at specific tyrosine residues, the glueocorticoid-induced pathway did not. We also showed that a protein tyrosine kinase of the Src family is responsible for the phosphorylation of tyrosines on PKC6. By performing in vitro kinase assays, we found that several Src kinases of B cells were able to phosphorylate PKC6 and that they were constitutively active. Finally, we demonstrate a dex-dependent functional protein-protein interaction between the glucocorticoid receptor (GR) and PKC6 in B cells, an association that has not been previously described. We further analysed the interacting domains of PKG6 and GR using in vitro GST pull-down assays, whereby the regulatory domain of PKC6 and the extended DNA-binding domain of the GR were involved. In summary, we found that in B-lymphoid cell lines, MMTV uses novel mechanisms of transcriptional control and signal transduction that are different from those at work in mammary epithelial or fibroblastic cells. These findings will be used as model for cellular genes involved in cellular processes such as immune functions, inflammation, or oncogenic transformation that may have a similar pattern of regulation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Epstein-Barr virus (EBV) is associated with several types of cancers including Hodgkin's lymphoma (HL) and nasopharyngeal carcinoma (NPC). EBV-encoded latent membrane protein 1 (LMP1), a multifunctional oncoprotein, is a powerful activator of the transcription factor NF-κB, a property that is essential for EBV-transformed lymphoblastoid cell survival. Previous studies reported LMP1 sequence variations and induction of higher NF-κB activation levels compared to the prototype B95-8 LMP1 by some variants. Here we used biopsies of EBV-associated cancers and blood of individuals included in the Swiss HIV Cohort Study (SHCS) to analyze LMP1 genetic diversity and impact of sequence variations on LMP1-mediated NF-κB activation potential. We found that a number of variants mediate higher NF-κB activation levels when compared to B95-8 LMP1 and mapped three single polymorphisms responsible for this phenotype: F106Y, I124V and F144I. F106Y was present in all LMP1 isolated in this study and its effect was variant dependent, suggesting that it was modulated by other polymorphisms. The two polymorphisms I124V and F144I were present in distinct phylogenetic groups and were linked with other specific polymorphisms nearby, I152L and D150A/L151I, respectively. The two sets of polymorphisms, I124V/I152L and F144I/D150A/L151I, which were markers of increased NF-κB activation in vitro, were not associated with EBV-associated HL in the SHCS. Taken together these results highlighted the importance of single polymorphisms for the modulation of LMP1 signaling activity and demonstrated that several groups of LMP1 variants, through distinct mutational paths, mediated enhanced NF-κB activation levels compared to B95-8 LMP1.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fragile X-associated tremor/ataxia syndrome (FXTAS) is a late-onset movement disorder associated with FMR1 premutation alleles. Asymptomatic premutation (aPM) carriers have preserved cognitive functions, but they present subtle executive deficits. Current efforts are focusing on the identification of specific cognitive markers that can detect aPM carriers at higher risk of developing FXTAS. This study aims at evaluating verbal memory and executive functions as early markers of disease progression while exploring associated brain structure changes using diffusion tensor imaging. We assessed 30 aPM men and 38 intrafamilial controls. The groups perform similarly in the executive domain except for decreased performance in motor planning in aPM carriers. In the memory domain, aPM carriers present a significant decrease in verbal encoding and retrieval. Retrieval is associated with microstructural changes of the white matter (WM) of the left hippocampal fimbria. Encoding is associated with changes in the WM under the right dorsolateral prefrontal cortex, a region implicated in relational memory encoding. These associations were found in the aPM group only and did not show age-related decline. This may be interpreted as a neurodevelopmental effect of the premutation, and longitudinal studies are required to better understand these mechanisms.