263 resultados para Occuational Exposure
Resumo:
Exposure to various pesticides has been characterized in workers and the general population, but interpretation and assessment of biomonitoring data from a health risk perspective remains an issue. For workers, a Biological Exposure Index (BEI®) has been proposed for some substances, but most BEIs are based on urinary biomarker concentrations at Threshold Limit Value - Time Weighted Average (TLV-TWA) airborne exposure while occupational exposure can potentially occurs through multiple routes, particularly by skin contact (i.e.captan, chlorpyrifos, malathion). Similarly, several biomonitoring studies have been conducted to assess environmental exposure to pesticides in different populations, but dose estimates or health risks related to these environmental exposures (mainly through the diet), were rarely characterized. Recently, biological reference values (BRVs) in the form of urinary pesticide metabolites have been proposed for both occupationally exposed workers and children. These BRVs were established using toxicokinetic models developed for each substance, and correspond to safe levels of absorption in humans, regardless of the exposure scenario. The purpose of this chapter is to present a review of a toxicokinetic modeling approach used to determine biological reference values. These are then used to facilitate health risk assessments and decision-making on occupational and environmental pesticide exposures. Such models have the ability to link absorbed dose of the parent compound to exposure biomarkers and critical biological effects. To obtain the safest BRVs for the studied population, simulations of exposure scenarios were performed using a conservative reference dose such as a no-observed-effect level (NOEL). The various examples discussed in this chapter show the importance of knowledge on urine collections (i.e. spot samples and complete 8-h, 12-h or 24-h collections), sampling strategies, metabolism, relative proportions of the different metabolites in urine, absorption fraction, route of exposure and background contribution of prior exposures. They also show that relying on urinary measurements of specific metabolites appears more accurate when applying this approach to the case of occupational exposures. Conversely, relying on semi-specific metabolites (metabolites common to a category of pesticides) appears more accurate for the health risk assessment of environmental exposures given that the precise pesticides to which subjects are exposed are often unknown. In conclusion, the modeling approach to define BRVs for the relevant pesticides may be useful for public health authorities for managing issues related to health risks resulting from environmental and occupational exposures to pesticides.
Resumo:
Objectives To prospectively assess respiratory health in wastewater workers and garbage collectors over 5 years. Methods Exposure, respiratory symptoms and conditions, spirometry and lung-specific proteins were assessed yearly in a cohort of 304 controls, 247 wastewater workers and 52 garbage collectors. Results were analysed with random coefficient models and linear regression taking into account several potential confounders. Results Symptoms, spirometry and lung-specific proteins were not affected by occupational exposure. Conclusions In this population no effects of occupational exposure to bioaerosols were found, probably because of good working conditions.
Resumo:
We investigated the influences of odor exposure on performance and on breathing measures. The task was composed of tracking, short-term memory, and peripheral reaction parts. During rest or while performing the task, 12 participants were exposed to 4 different odors in 2 intensities. The higher intensity of the malodors induced a short-term decrement in mean inspiration flow (Vi/Ti) after stimulus onset and impaired performance in the short-term memory task, as compared with control trials; no effect was found for the positively judged odors. The study suggests that a distractor as simple as a bad smell may pull a person off task, however briefly, and may result in a detriment to performance. Actual or potential applications of this research involve designing or securing tasks in such a way that a brief withdrawal of attention does not have fatal consequences.
Resumo:
Previous studies have demonstrated that poultry house workers are exposed to very high levels of organic dust and consequently have an increased prevalence of adverse respiratory symptoms. However, the influence of the age of broilers on bioaerosol concentrations has not been investigated. To evaluate the evolution of bioaerosol concentration during the fattening period, bioaerosol parameters (inhalable dust, endotoxin and bacteria) were measured in 12 poultry confinement buildings in Switzerland, at three different stages of the birds' growth; samples of air taken from within the breathing zones of individual poultry house employees as they caught the chickens ready to be transported for slaughter were also analysed. Quantitative polymerase chain reaction (Q-PCR) was used to assess the quantity of total airborne bacteria and total airborne Staphylococcus species. Bioaerosol levels increased significantly during the fattening period of the chickens. During the task of catching mature birds, the mean inhalable dust concentration for a worker was 26 +/- 1.9 mg m(-3) and endotoxin concentration was 6198 +/- 2.3 EU m(-3) air, >6-fold higher than the Swiss occupational recommended value (1000 EU m(-3)). The mean exposure level of bird catchers to total bacteria and Staphylococcus species measured by Q-PCR is also very high, respectively, reaching values of 53 (+/-2.6) x 10(7) cells m(-3) air and 62 (+/-1.9) x 10(6) m(-3) air. It was concluded that in the absence of wearing protective breathing apparatus, chicken catchers in Switzerland risk exposure beyond recommended limits for all measured bioaerosol parameters. Moreover, the use of Q-PCR to estimate total and specific numbers of airborne bacteria is a promising tool for evaluating any modifications intended to improve the safety of current working practices
Resumo:
CONTEXT: The Fracture Reduction Evaluation of Denosumab in Osteoporosis Every 6 Months (FREEDOM) extension is evaluating the long-term efficacy and safety of denosumab for up to 10 years. OBJECTIVE: The objective of the study was to report results from the first 3 years of the extension, representing up to 6 years of denosumab exposure. DESIGN, SETTING, AND PARTICIPANTS: This was a multicenter, international, open-label study of 4550 women. INTERVENTION: Women from the FREEDOM denosumab group received 3 more years of denosumab for a total of 6 years (long-term) and women from the FREEDOM placebo group received 3 years of denosumab (crossover). MAIN OUTCOME MEASURES: Bone turnover markers (BTMs), bone mineral density (BMD), fracture, and safety data are reported. RESULTS: Reductions in BTMs were maintained (long-term) or achieved rapidly (crossover) after denosumab administration. In the long-term group, BMD further increased for cumulative 6-year gains of 15.2% (lumbar spine) and 7.5% (total hip). During the first 3 years of denosumab treatment, the crossover group had significant gains in lumbar spine (9.4%) and total hip (4.8%) BMD, similar to the long-term group during the 3-year FREEDOM trial. In the long-term group, fracture incidences remained low and below the rates projected for a virtual placebo cohort. In the crossover group, 3-year incidences of new vertebral and nonvertebral fractures were similar to those of the FREEDOM denosumab group. Incidence rates of adverse events did not increase over time. Six participants had events of osteonecrosis of the jaw confirmed by adjudication. One participant had a fracture adjudicated as consistent with atypical femoral fracture. CONCLUSION: Denosumab treatment for 6 years remained well tolerated, maintained reduced bone turnover, and continued to increase BMD. Fracture incidence remained low.
Resumo:
Question: Outdoor occupational exposure could be associated with important cumulative and intense exposure to ultraviolet (UV) solar radiation. Such exposure would increase risk of skin cancer. However, little information exists on jobs associated with intense UV exposure. The objective of this study was to characterise occupational UV exposure in a representative sample in France. Methods: A population-based survey was conducted in May-June 2012 through computer-assisted telephonic interviews in population 25 to 69 years of age. Individual UV irradiation was computed with declared time and place of residence matched to UV records from satellite measurement (Eurosun project). We analysed factors influencing exposure to UV (annual average and seasonal peak). Results: A total of 1442 individuals declared having an occupational exposure to UV which represents 18% of population aged 25 to 69 years. Outdoor workers were more frequently men (58%), aged 40-54 (43%), with a phototype III or IV (69%). Occupations associated with highest UV exposure were: construction workers (annual daily average 62.8 Joules/m2), gardeners (62.6), farmers (52.8), culture/art/social sciences workers (52.0) and transport workers/mail carriers (49.5). The maximum of UVA exposure was found for occupation with a strong seasonality of exposure: culture, art or social sciences works (98.1 Joules/m2), construction works (97.2), gardening (96.7) and farming (95.0). Significant factors associated with high occupational UV exposure were gender (men vs. women: 53.6 vs. 42.6), phototype (IV vs. I: 51.9 vs. 45.5) and taking lunch outdoors (always vs. never: 59.8 vs. 48.6). Conclusion: Our study showed that some occupations were associated with particularly intense UV exposure such as farmers, gardeners, construction workers. Other unexpected occupations were also associated with high UV exposure such as transport workers, mail carriers and culture/art/social sciences workers.
Resumo:
Agricultural workers are exposed to folpet, but biomonitoring data are limited. Phthalimide (PI), phthalamic acid (PAA), and phthalic acid (PA) are the ring metabolites of this fungicide according to animal studies, but they have not yet been measured in human urine as metabolites of folpet, only PA as a metabolite of phthalates. The objective of this study was thus to develop a reliable gas chromatography-tandem mass spectrometry (GC-MS) method to quantify the sum of PI, PAA, and PA ring-metabolites of folpet in human urine. Briefly, the method consisted of adding p-methylhippuric acid as an internal standard, performing an acid hydrolysis at 100 °C to convert ring-metabolites into PA, purifying samples by ethyl acetate extraction, and derivatizing with N,O-bis(trimethylsilyl)trifluoro acetamide prior to GC-MS analysis. The method had a detection limit of 60.2 nmol/L (10 ng/mL); it was found to be accurate (mean recovery, 97%), precise (inter- and intra-day percentage relative standard deviations <13%), and with a good linearity (R (2) > 0.98). Validation was conducted using unexposed peoples urine spiked at concentrations ranging from 4.0 to 16.1 μmol/L, along with urine samples of volunteers dosed with folpet, and of exposed workers. The method proved to be (1) suitable and accurate to determine the kinetic profile of PA equivalents in the urine of volunteers orally and dermally administered folpet and (2) relevant for the biomonitoring of exposure in workers.
Resumo:
In order to study the various health influencing parameters related to engineered nanoparticles as well as to soot emitted b diesel engines, there is an urgent need for appropriate sampling devices and methods for cell exposure studies that simulate the respiratory system and facilitate associated biological and toxicological tests. The objective of the present work was the further advancement of a Multiculture Exposure Chamber (MEC) into a dose-controlled system for efficient delivery of nanoparticles to cells. It was validated with various types of nanoparticles (diesel engine soot aggregates, engineered nanoparticles for various applications) and with state-of-the-art nanoparticle measurement instrumentation to assess the local deposition of nanoparticles on the cell cultures. The dose of nanoparticles to which cell cultures are being exposed was evaluated in the normal operation of the in vitro cell culture exposure chamber based on measurements of the size specific nanoparticle collection efficiency of a cell free device. The average efficiency in delivering nanoparticles in the MEC was approximately 82%. The nanoparticle deposition was demonstrated by Transmission Electron Microscopy (TEM). Analysis and design of the MEC employs Computational Fluid Dynamics (CFD) and true to geometry representations of nanoparticles with the aim to assess the uniformity of nanoparticle deposition among the culture wells. Final testing of the dose-controlled cell exposure system was performed by exposing A549 lung cell cultures to fluorescently labeled nanoparticles. Delivery of aerosolized nanoparticles was demonstrated by visualization of the nanoparticle fluorescence in the cell cultures following exposure. Also monitored was the potential of the aerosolized nanoparticles to generate reactive oxygen species (ROS) (e.g. free radicals and peroxides generation), thus expressing the oxidative stress of the cells which can cause extensive cellular damage or damage on DNA.
Resumo:
About 30 million people live above 2500 m in the Andean Mountains of South America. Among them are 5.5 million Aymaras, an ethnic group with its own language, living on the altiplano of Bolivia, Peru, and northern Chile at altitudes of up to 4400 m. In this high altitude region traces of human population go back for more than 2000 years with constant evolutionary pressure on its residents for genetic adaptation to high altitude. Aymaras as the assumed direct descendents of the ancient cultures living in this region were the focus of much research interest during the last decades and several distinctive adaptation patterns to life at high altitude have been described in this ethnic group. The aim of this article was to review the physiology and pathophysiology of circulatory adaptation and maladaptation to longtime altitude exposure in Aymaras and Caucasians.
Resumo:
The aim of this article is to present an overview of salient issues of exposure, characterisation and hazard assessment of nanomaterials as they emerged from the consensus-building of experts undertaken within the four year European Commission coordination project NanoImpactNet. The approach adopted is to consolidate and condense the findings and problem-identification in such a way as to identify knowledge-gaps and generate a set of interim recommendations of use to industry, regulators, research bodies and funders. The categories of recommendation arising from the consensual view address: significant gaps in vital factual knowledge of exposure, characterisation and hazards; the development, dissemination and standardisation of appropriate laboratory protocols; address a wide range of technical issues in establishing an adequate risk assessment platform; the more efficient and coordinated gathering of basic data; greater inter-organisational cooperation; regulatory harmonization; the wider use of the life-cycle approaches; and the wider involvement of all stakeholders in the discussion and solution-finding efforts for nanosafety.