174 resultados para O157H7 COLONIZATION
Resumo:
656 I. 657 II. 658 III. 660 IV. 661 V. 663 VI. 663 VII. 664 VIII. 664 665 References 665 SUMMARY: Baker's law refers to the tendency for species that establish on islands by long-distance dispersal to show an increased capacity for self-fertilization because of the advantage of self-compatibility when colonizing new habitat. Despite its intuitive appeal and broad empirical support, it has received substantial criticism over the years since it was proclaimed in the 1950s, not least because it seemed to be contradicted by the high frequency of dioecy on islands. Recent theoretical work has again questioned the generality and scope of Baker's law. Here, we attempt to discern where the idea is useful to apply and where it is not. We conclude that several of the perceived problems with Baker's law fall away when a narrower perspective is adopted on how it should be circumscribed. We emphasize that Baker's law should be read in terms of an enrichment of a capacity for uniparental reproduction in colonizing situations, rather than of high selfing rates. We suggest that Baker's law might be tested in four different contexts, which set the breadth of its scope: the colonization of oceanic islands, metapopulation dynamics with recurrent colonization, range expansions with recurrent colonization, and colonization through species invasions.
Resumo:
Oxalate is a highly insoluble metabolic waste excreted by the kidneys. Disturbances of oxalate metabolism are encountered in enteric hyperoxaluria (secondary to malabsorption, gastric bypass or in case of insufficient Oxalobacter colonization), in hereditary hyperoxaluria and in intoxication (ethylene glycol, vitamin C). Hyperoxaluria causes a large spectrum of diseases, from isolated hyperoxaluria to kidney stones and nephrocalcinosis formation, eventually leading to kidney failure and systemic oxalosis with life-threatening deposits in vital organs. New causes of hyperoxaluria are arising recently, in particular after gastric bypass surgery, which requires regular and preemptive monitoring. The treatment of hyperoxaluria involves reduction in oxalate intake and increase in calcium intake. Optimal urine dilution and supplementation with inhibitors of kidney stone formation (citrate) are required. Some conditions may need vitamin B6 supplementation, and the addition of probiotics might be useful in the future. Primary care physicians should identify cases of recurrent calcium oxalate stones and severe hyperoxaluria. Further management of hyperoxaluria requires specialized care.
Resumo:
Ease of worldwide travel provides increased opportunities for organisms not only to colonize new environments but also to encounter related but diverged populations. Such events of reconnection and secondary contact of previously isolated populations are widely observed at different time scales. For example, during the quaternary glaciation, sea water level fluctuations caused temporal isolation of populations, often to be followed by secondary contact. At shorter time scales, population isolation and reconnection of viruses are commonly observed, and such events are often associated with epidemics and pandemics. Here, using coalescent theory and simulations, we describe the temporal impact of population reconnection after isolation on nucleotide differences and the site frequency spectrum, as well as common summary statistics of DNA variation. We identify robust genomic signatures of population reconnection after isolation. We utilize our development to infer the recent evolutionary history of human immunodeficiency virus 1 (HIV-1) in Asia and South America, successfully retrieving the successive HIV subtype colonization events in these regions. Our analysis reveals that divergent HIV-1 subtype populations are currently admixing in these regions, suggesting that HIV-1 may be undergoing a process of homogenization, contrary to popular belief.
Resumo:
Infectious diseases after solid organ transplantation (SOT) are a significant cause of morbidity and reduced allograft and patient survival; however, the influence of infection on the development of chronic allograft dysfunction has not been completely delineated. Some viral infections appear to affect allograft function by both inducing direct tissue damage and immunologically related injury, including acute rejection. In particular, this has been observed for cytomegalovirus (CMV) infection in all SOT recipients and for BK virus infection in kidney transplant recipients, for community-acquired respiratory viruses in lung transplant recipients, and for hepatitis C virus in liver transplant recipients. The impact of bacterial and fungal infections is less clear, but bacterial urinary tract infections and respiratory tract colonization by Pseudomonas aeruginosa and Aspergillus spp appear to be correlated with higher rates of chronic allograft dysfunction in kidney and lung transplant recipients, respectively. Evidence supports the beneficial effects of the use of antiviral prophylaxis for CMV in improving allograft function and survival in SOT recipients. Nevertheless, there is still a need for prospective interventional trials assessing the potential effects of preventive and therapeutic strategies against bacterial and fungal infection for reducing or delaying the development of chronic allograft dysfunction.
Resumo:
Invasive candidiasis is associated with high mortality rates (35% to 60%), similar to the range reported for septic shock. The most common types include candidemia, frequently observed in immunocompromised patients, and noncandidemic systemic candidiasis, which constitutes the majority of cases in critically ill patients. However, they are difficult to prove and a definite diagnosis usually occurs late in the course of the disease, thus contributing to their bad prognosis. Early empirical treatment improves the prognosis and currently relies on the positive predictive value (PPV) of risk-assessment strategies (colonization index, Candida score, predictive rules) based on combinations of risk factors, but it may have also largely contributed to the overuse of antifungal agents in critically ill patients. In this context, non- culture-based diagnostic methods, including specific and nonspecific biomarkers, may significantly improve the diagnosis of invasive candidiasis. Candida DNA and mannan antigen/antimannan antibodies are of limited interest for the diagnosis of invasive candidiasis as they fail to identify noncandidemic systemic candidiasis, despite early positivity in candidemic patients. The utility of 1,3-beta-D-glucan (b-D-glucan), a panfungal cell wall antigen, has been demonstrated for the diagnosis of fungal infections in immunocompromised patients. Preliminary data suggest that it is also detectable early in critically ill patients developing noncandidemic systemic candidiasis. To take advantage of the high negative predictive value of risk-assessment strategies and the early increase in specific fungal biomarkers in high-risk patients, we propose a practical 2-step approach to improve the selection of patients susceptible to benefit from empirical antifungal treatment.
Resumo:
We advocate the advantage of an evolutionary approach to conservation biology that considers evolutionary history at various levels of biological organization. We review work on three separate plant taxa, spanning from one to multiple decades, illustrating extremes in metapopulation functioning. We show how the rare endemics Centaurea corymbosa (Clape Massif, France) and Brassica insularis in Corsica (France) may be caught in an evolutionary trap: disruption of metapopulation functioning due to lack of colonization of new sites may have counterselected traits such as dispersal ability or self-compatibility, making these species particularly vulnerable to any disturbance. The third case study concerns the evolution of life history strategies in the highly diverse genus Leucadendron of the South African fynbos. There, fire disturbance and the recolonization phase after fires are so integral to the functioning of populations that recruitment of new individuals is conditioned by fire. We show how past adaptation to different fire regimes and climatic constraints make species with different life history syndromes more or less vulnerable to global changes. These different case studies suggest that management strategies should promote evolutionary potential and evolutionary processes to better protect extant biodiversity and biodiversification.
Resumo:
The disjunction of floras between East Asia, Southeast North America, West North America, and Southwest Eurasia has been interpreted in terms of the fragmentation of a once continuous mixed mesophytic forest that occurred throughout the Northern Hemisphere due to the climatic and geological changes during the late Tertiary. The sword moss, Bryoxiphium, exhibits a distribution that strikingly resembles that of the mesophytic forest elements such as Liriodendron and is considered as the only living member of an early Tertiary flora in Iceland. These hypotheses are tested here using molecular dating analyses and ancestral area estimations. The results suggest that the extant range of Bryoxiphium results from the fragmentation of a formerly wider range encompassing North America and Southeast Asia about 10 million years ago. The split of continental ancestral populations is too recent to match with a continental drift scenario but is spatially and temporally remarkably congruent with that observed in Tertiary angiosperm relict species. The timing of the colonization of Iceland from Macaronesian ancestors, about two million years ago, is, however, incompatible with the hypothesis that Bryoxiphium is the only living member of an early Tertiary flora of the island. Alaska was recurrently colonized from East Asia. The ability of Bryoxiphium to overcome large oceanic barriers is further evidenced by its occurrence on remote oceanic archipelagos. In particular, Madeira was colonized twice independently from American and East Asian ancestors, respectively. The striking range disjunction of Bryoxiphium is interpreted in terms of its mating system, as the taxon exhibits a very singular pattern of spatial segregation of the sexes.
Resumo:
On a geological time scale the conditions on earth are very variable and biological patterns (for example the distributions of species) are very dynamic. Understanding large scale patterns of variation observed today thus requires a deep understanding of the historical factors that drove their evolution. In this thesis, we reevaluated the evolution and maintenance of a continental color cline observed in the European barn owl (Tyto alba) using population genetic tools. The colour cline spans from south-est Europe where most individual have pure white underparts to north and east Europe where most individuals have rufous-brown underparts. Our results globally showed that the old scenario, stipulating that the color cline evolved by secondary contact of two color morphs (white and rufous) that evolved in allopatry during the last ice age has to be revised. We collected samples of about 700 barn owls from the Western Palearctic to establish the first population genetic data set for this species. Individuals were genotyped at 22 microsatellites markers, at one mitochondrial gene, and at a candidate color gene. The color of each individuals was assessed and their sex determined by molecular methods. We first showed that the genetic variation in Western Europe is very limited compared to the heritable color variation. We found no evidences of different glacial lineages, and showed that selection must be involved in the maintenance of the color cline (chapter 1). Using computer simulations, we demonstrated that the post-glacial colonization of Europe occurred from the Iberian Peninsula and that the color cline could not have evolved by neutral demographic processes during this colonization (chapter 2). Finally we reevaluated the whole history of the establishment of the Western Palearctic variation of the barn owl (chapter 3): This study showed that all Western European barn owls descend from white barn owls phenotypes from the Middle East that colonized the Iberian Peninsula via North-Africa. Following the end of the last ice age (20'000 years ago), these white barn owls colonized Western Europe and under selection a novel rufous phenotype evolved (during or after the colonization). An important part of the color variation could be explained by a single mutation in the melanocortin-1-receptor (MC1R) gene that appeared during or after the colonization. The colonization of Europe reached until Greece, where the rufous birds encountered white ones (which reached Greece from the Middle East over the Bosporus) in a secondary contact zone. Our analyses show that white and rufous barn owls in Greece interbreed only to a limited extent. This suggests that barn owls are at the verge of becoming two species in Greece and demonstrates that European barn owls represent an incipient ring species around the Mediterranean. The revisited history of the establishment of the European barn owl color cline makes this model system remarkable for several aspects. It is a very clear example of strong local adaptation that can be achieved despite high gene flow (strong color and MC1R differentiation despite almost no neutral genetic differentiation). It also offers a wonderful model system to study the interactions between colonization processes and selection processes which have, for now, been remarkably understudied despite their potentially ubiquitous importance. Finally it represents a very interesting case in the speciation continuum and appeals for further studying the amount of gene flow that occurs between the color morphs in Greece. -- Sur l'échelle des temps géologiques, les conditions sur terre sont très variables et les patrons biologiques (telle que la distribution des espèces) sont très dynamiques. Si l'on veut comprendre des patrons que l'on peut observer à large échelle aujourd'hui, il est nécessaire de d'abord comprendre les facteurs historiques qui ont gouverné leur établissement. Dans cette thèse, nous allons réévaluer, grâce à des outils modernes de génétique des populations, l'évolution et la maintenance d'un cline de couleur continental observé chez l'effraie des clochers européenne (Tyto alba). Globalement, nos résultats montrent que le scenario accepté jusqu'à maintenant, qui stipule que le cline de couleur a évolué à partir du contact secondaire de deux morphes de couleur (blanches et rousses) ayant évolué en allopatrie durant les dernières glaciations, est à revoir. Afin de constituer le premier jeu de données de génétique des populations pour cette espèce, nous avons récolté des échantillons d'environ 700 effraies de l'ouest Paléarctique. Nous avons génotypé tous les individus à 22 loci microsatellites, sur un gène mitochondrial et sur un autre gène participant au déterminisme de la couleur. Nous avons aussi mesuré la couleur de tous les individus et déterminé leur sexe génétiquement. Nous avons tout d'abord pu montrer que la variation génétique neutre est négligeable en comparaison avec la variation héritable de couleur, qu'il n'existe qu'une seule lignée européenne et que de la sélection doit être impliquée dans le maintien du cline de couleur (chapitre 1). Grâce à des simulations informatiques, nous avons démontré que l'ensemble de l'Europe de l'ouest a été recolonisé depuis la Péninsule Ibérique après les dernières glaciations et que le cline de couleur ne peut pas avoir évolué par des processus neutre durant cette colonisation (chapitre 2). Finalement, nous avons réévalué l'ensemble de l'histoire postglaciaire de l'espèce dans l'ouest Paléarctique (chapitre 3): l'ensemble des effraies du Paléarctique descendent d'effraie claire du Moyen-Orient qui ont colonisé la péninsule ibérique en passant par l'Afrique du nord. Après la fin de la dernière glaciation (il y a 20'000 ans), ces effraies claires ont colonisé l'Europe de l'ouest et ont évolués par sélection le phénotype roux (durant ou après la colonisation). Une part importante de la variation de couleur peut être expliquée par une mutation sur le gène MC1R qui est apparue durant ou juste après la colonisation. Cette vague de colonisation s'est poursuivie jusqu'en Grèce où ces effraies rousses ont rencontré dans une zone de contact secondaire des effraies claires (qui sont remontées en Grèce depuis le Moyen-Orient via le Bosphore). Nos analyses montrent que le flux de gènes entre effraies blanches et rousses est limité en Grèce, ce qui suggère qu'elles sont en passe de former deux espèces et ce qui montre que les effraies constituent un exemple naissant de spéciation en anneaux autour de la Méditerranée. L'histoire revisitée des effraies des clochers de l'ouest Paléarctique en fait un système modèle remarquable pour plusieurs aspects. C'est un exemple très claire de forte adaptation locale maintenue malgré un fort flux de gènes (différenciation forte de couleur et sur le gène MC1R malgré presque aucune structure neutre). Il offre également un très bon système pour étudier l'interaction entre colonisation et sélection, un thème ayant été remarquablement peu étudié malgré son importance. Et il offre finalement un cas très intéressant dans le « continuum de spéciation » et il serait très intéressant d'étudier plus en détail l'importance du flux de gènes entre les morphes de couleur en Grèce.
Resumo:
UNLABELLED: Whole-genome sequencing (WGS) of 228 isolates was used to elucidate the origin and dynamics of a long-term outbreak of methicillin-resistant Staphylococcus aureus (MRSA) sequence type 228 (ST228) SCCmec I that involved 1,600 patients in a tertiary care hospital between 2008 and 2012. Combining of the sequence data with detailed metadata on patient admission and movement confirmed that the outbreak was due to the transmission of a single clonal variant of ST228, rather than repeated introductions of this clone into the hospital. We note that this clone is significantly more frequently recovered from groin and rectal swabs than other clones (P < 0.0001) and is also significantly more transmissible between roommates (P < 0.01). Unrecognized MRSA carriers, together with movements of patients within the hospital, also seem to have played a major role. These atypical colonization and transmission dynamics can help explain how the outbreak was maintained over the long term. This "stealthy" asymptomatic colonization of the gut, combined with heightened transmissibility (potentially reflecting a role for environmental reservoirs), means the dynamics of this outbreak share some properties with enteric pathogens such as vancomycin-resistant enterococci or Clostridium difficile. IMPORTANCE: Using whole-genome sequencing, we showed that a large and prolonged outbreak of methicillin-resistant Staphylococcus aureus was due to the clonal spread of a specific strain with genetic elements adapted to the hospital environment. Unrecognized MRSA carriers, the movement of patients within the hospital, and the low detection with clinical specimens were also factors that played a role in this occurrence. The atypical colonization of the gut means the dynamics of this outbreak may share some properties with enteric pathogens.