228 resultados para Memory element


Relevância:

20.00% 20.00%

Publicador:

Resumo:

To study telomere length dynamics in hematopoietic cells with age, we analyzed the average length of telomere repeat sequences in diverse populations of nucleated blood cells. More than 500 individuals ranging in age from 0 to 90 yr, including 36 pairs of monozygous and dizygotic twins, were analyzed using quantitative fluorescence in situ hybridization and flow cytometry. Granulocytes and naive T cells showed a parallel biphasic decline in telomere length with age that most likely reflected accumulated cell divisions in the common precursors of both cell types: hematopoietic stem cells. Telomere loss was very rapid in the first year, and continued for more than eight decades at a 30-fold lower rate. Memory T cells also showed an initial rapid decline in telomere length with age. However, in contrast to naive T cells, this decline continued for several years, and in older individuals lymphocytes typically had shorter telomeres than did granulocytes. Our findings point to a dramatic decline in stem cell turnover in early childhood and support the notion that cell divisions in hematopoietic stem cells and T cells result in loss of telomeric DNA.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Working memory, commonly defined as the ability to hold mental representations on line transiently and to manipulate these representations, is known to be a core deficit in schizophrenia. The aim of the present study was to investigate the visuo-spatial component of the working memory in schizophrenia, and more precisely to what extent the dynamic visuo-spatial information processing is impaired in schizophrenia patients. For this purpose we used a computerized paradigm in which 29 patients with schizophrenia (DSMIV, Diagnostic Interview for Genetic Studies) and 29 age and sex matched control subjects (DIGS) had to memorize a plane moving across the computer screen and to identify the observed trajectory among 9 plots proposed together. Each trajectory could be seen max. 3 times if needed. The results showed no difference between schizophrenia patients and controls regarding the number of correct trajectory identified after the first presentation. However, when we determine the mean number of correct trajectories on the basis of 3 trials, we observed that schizophrenia patients are significantly less performant than controls (Mann-Whitney, p _ 0.002). These findings suggest that, although schizophrenia patients are able to memorize some dynamic trajectories as well as controls, they do not profit from the repetition of the trajectory presentation. These findings are congruent with the hypothesis that schizophrenia could induce an unbalance between local and global information processing: the patients may be able to focus on details of the trajectory which could allow them to find the right target (bottom-up processes), but may show difficulty to refer to previous experience in order to filter incoming information (top-down processes) and enhance their visuo-spatial working memory abilities.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The present work assessed the effects of intracerebroventricular injections (2x5 mg/2.5 ml) of recombined human nerve growth factor (rhNGF) at postnatal days 2 and 3 upon the development of spatial learning capacities in rats. The treated rats were trained at the age of 22 days to escape onto an invisible platform at a fixed position in space in a Morris navigation task. For half of the subjects, the training position was also cued, a procedure aimed at facilitating escape and reducing attention to the distant spatial cues. At the age of 2 months all the rats were retrained in the same task. Treatment effects were found in both immature and adult rats. The injection of NGF induced a slight alteration of the immature rats' performance. In contrast, a marked impairment of spatial abilities was shown in the 2-month-old rats. The most consistent effects were a significant increase in the escape latency and a decrease bias towards the training platform area during probe trials. The reduction of spatial memory was particularly marked if the subjects had been trained in a cued condition. Taken together, these experiments reveal that an acute pharmacological treatment that leads to transient modifications during early development might induce a behavioural change long after treatment. Thus, the development and the maintenance of an accurate spatial representation are tightly related to the development of brain structures that could be altered by precocious NGF administrations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND: Until recently, neurosurgeons eagerly removed cerebellar lesions without consideration of future cognitive impairment that might be caused by the resection. In children, transient cerebellar mutism after resection has lead to a diminished use of midline approaches and vermis transection, as well as reduced retraction of the cerebellar hemispheres. The role of the cerebellum in higher cognitive functions beyond coordination and motor control has recently attracted significant interest in the scientific community, and might change the neurosurgical approach to these lesions. The aim of this study was to investigate the specific effects of cerebellar lesions on memory, and to assess a possible lateralisation effect. METHODS: We studied 16 patients diagnosed with a cerebellar lesion, from January 1997 to April 2005, in the "Centre Hospitalier Universitaire Vaudois (CHUV)", Lausanne, Switzerland. Different neuropsychological tests assessing short term and anterograde memory, verbal and visuo-spatial modalities were performed pre-operatively. RESULTS: Severe memory deficits in at least one modality were identified in a majority (81%) of patients with cerebellar lesions. Only 1 patient (6%) had no memory deficit. In our series lateralisation of the lesion did not lead to a significant difference in verbal or visuo-spatial memory deficits. FINDINGS: These findings are consistent with findings in the literature concerning memory deficits in isolated cerebellar lesions. These can be explained by anatomical pathways. However, the cross-lateralisation theory cannot be demonstrated in our series. The high percentage of patients with a cerebellar lesion who demonstrate memory deficits should lead us to assess memory in all patients with cerebellar lesions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Stable protein-DNA complexes can be assembled in vitro at the 5' end of Xenopus laevis vitellogenin genes using extracts of nuclei from estrogen-induced frog liver and visualized by electron microscopy. Complexes at the three following sites can be identified on the gene B2: the transcription initiation site, the estrogen responsive element (ERE) and in the first intron. The complex at the transcription initiation site is stabilized by dinucleotides and thus represents a ternary transcription complex. The formation of the complexes at the two other sites is enhanced by estrogen and is reduced by tamoxifen, an antagonist of estrogen, while this latter effect is reversed by adding an excess of hormone. No sequence homology is apparent between the site containing the ERE and the binding site in intron I and functional tests in MCF-7 cells suggest that these two sites are not equivalent. Finally, we made use of previously characterized deletion mutants of the 5' flanking region of the gene B1, a close relative of the gene B2, to demonstrate that the 13-bp palindromic core element of the ERE is involved in the formation of the complexes observed upstream of the transcription initiation site.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

OBJECTIVE: Patients with schizophrenia show deficits in visuospatial working memory and visual pursuit processes. It is currently unclear, however, whether both impairments are related to a common neuropathological origin. The purpose of the present study was therefore to examine the possible relations between the encoding and the discrimination of dynamic visuospatial stimuli in schizophrenia. METHOD: Sixteen outpatients with schizophrenia and 16 control subjects were asked to encode complex disc displacements presented on a screen. After a delay, participants had to identify the previously presented disc trajectory from a choice of six static linear paths, among which were five incorrect paths. The precision of visual pursuit eye movements during the initial presentation of the dynamic stimulus was assessed. The fixations and scanning time in definite regions of the six paths presented during the discrimination phase were investigated. RESULTS: In comparison with controls, patients showed poorer task performance, reduced pursuit accuracy during incorrect trials and less time scanning the correct stimulus or the incorrect paths approximating its global structure. Patients also spent less time scanning the leftmost portion of the correct path even when making a correct choice. The accuracy of visual pursuit and head movements, however, was not correlated with task performance. CONCLUSIONS: The present study provides direct support for the hypothesis that active integration of visuospatial information within working memory is deficient in schizophrenia. In contrast, a general impairment of oculomotor mechanisms involved in smooth pursuit did not appear to be directly related to lower visuospatial working memory performance in schizophrenia.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: The poxvirus vector Modified Vaccinia Virus Ankara (MVA) expressing HIV-1 Env, Gag, Pol and Nef antigens from clade B (MVA-B) is currently used as a HIV/AIDS vaccine candidate. A general strategy to try to improve the immunogenicity of poxvirus HIV-1 vaccine candidates is the deletion of known or suggested immunomodulatory vaccinia virus (VACV) genes.Methods: We have generated and characterized the innate immune sensing and the immunogenicity profile of a new HIV-1 vaccine candidate, which contains a deletion in a VACV gene.Results: We show that this VACV protein is expressed early during virus infection and localizes to the cytoplasm of infected cells. Deletion of this VACV gene from the MVA-B had no effect on virus growth kinetics; therefore this VACV protein is not essential for virus replication. The innate immune signals elicited by the MVA-B deletion mutant in human macrophages and monocyte-derived dendritic cells were characterized. In a DNA prime/MVA boost immunization protocol in mice, flow cytometry analysis revealed that the MVA-B deletion mutant enhanced the magnitude and polyfunctionality of the HIV-1-specific CD4 + and CD8 + T-cell memory immune responses, with most of the HIV-1 responses mediated by the CD8 + T-cell compartment with an effector phenotype. Significantly, while MVA-B induced preferentially Env- and Gag-specific CD8 + T-cell responses, the MVA-B deletion mutant induced more GPN-specific CD8 + T-cell responses. Furthermore, the MVA-B deletion mutant enhanced the levels of antibodies against Env in comparison with MVA-B.Conclusion: These findings revealed that this new VACV protein can be considered as an immunomodulator and that deleting this gene in MVA-B confers an immunological benefit by inducing innate immune responses and increasing the magnitude and quality of the T-cell memory immune responses to HIV-1 antigens. Our observations are relevant for the improvement of MVA vectors as HIV-1 vaccines.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Genomic islands are large DNA segments, present in most bacterial genome, that are acquired via horizontal gene transfer and contribute to the rapid bacterial evolution and adaptation of the host cell. Here we focus on the clc element (or ICEclc), a 103‑kb genomic island first discovered in Pseudomonas knackmussii B13, as a model of this diverse group of mobile genetic elements. ICEclc is normally integrated in the host bacterial chromosome but can excise and transfer to a new host by conjugation. In this chapter we review the basic features of ICEclc, the mechanisms of its life‑style as well as evolutionary relationships with other known and unknown elements in a variety of Proteobacteria.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background and aim of the study: Formation of implicit memory during general anaesthesia is still debated. Perceptual learning is the ability to learn to perceive. In this study, an auditory perceptual learning paradigm, using frequency discrimination, was performed to investigate the implicit memory. It was hypothesized that auditory stimulation would successfully induce perceptual learning. Thus, initial thresholds of the frequency discrimination postoperative task should be lower for the stimulated group (group S) compared to the control group (group C). Material and method: Eighty-seven patients ASA I-III undergoing visceral and orthopaedic surgery during general anaesthesia lasting more than 60 minutes were recruited. The anaesthesia procedure was standardized (BISR monitoring included). Group S received auditory stimulation (2000 pure tones applied for 45 minutes) during the surgery. Twenty-four hours after the operation, both groups performed ten blocks of the frequency discrimination task. Mean of the thresholds for the first three blocks (T1) were compared between groups. Results: Mean age and BIS value of group S and group C are respectively 40 } 11 vs 42 } 11 years (p = 0,49) and 42 } 6 vs 41 } 8 (p = 0.87). T1 is respectively 31 } 33 vs 28 } 34 (p = 0.72) in group S and C. Conclusion: In our study, no implicit memory during general anaesthesia was demonstrated. This may be explained by a modulation of the auditory evoked potentials caused by the anaesthesia, or by an insufficient longer time of repetitive stimulation to induce perceptual learning.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A series of 4 experiments examined the performance of rats with retrohippocampal lesions on a spatial water-maze task. The animals were trained to find and escape onto a hidden platform after swimming in a large pool of opaque water. The platform was invisible and could not be located using olfactory cues. Successful escape performance required the rats to develop strategies of approaching the correct location with reference solely to distal extramaze cues. The lesions encompassed the entire rostro-caudal extent of the lateral and medial entorhinal cortex, and included parts of the pre- and para-subiculum, angular bundle and subiculum. Groups ECR 1 and 2 sustained only partial damage of the subiculum, while Group ECR+S sustained extensive damage. These groups were compared with sham-lesion and unoperated control groups. In Expt 1A, a profound deficit in spatial localisation was found in groups ECR 1 and ECR+S, the rats receiving all training postoperatively. In Expt 1B, these two groups showed hyperactivity in an open-field. In Expt 2, extensive preoperative training caused a transitory saving in performance of the spatial task by group ECR 2, but comparisons with the groups of Expt 1A revealed no sustained improvement, except on one measure of performance in a post-training transfer test. All rats were then given (Expt 3) training on a cueing procedure using a visible platform. The spatial deficit disappeared but, on returning to the normal hidden platform procedure, it reappeared. Nevertheless, a final transfer test, during which the platform was removed from the apparatus, revealed a dissociation between two independent measures of performance: the rats with ECR lesions failed to search for the hidden platform but repeatedly crossed its correct location accurately during traverses of the entire pool. This partial recovery of performance was not (Expt 4) associated with any ability to discriminate between two locations in the pool. The apparently selective recovery of aspects of spatial memory is discussed in relation to O'Keefe and Nadel's (1978) spatial mapping theory of hippocampal function. We propose a modification of the theory in terms of a dissociation between procedural and declarative subcomponents of spatial memory. The declarative component is a flexible access system in which information is stored in a form independent of action. It is permanently lost after the lesion. The procedural component is "unmasked" by the retrohippocampal lesion giving rise to the partial recovery of spatial localisation performance.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Low pressure partial melting of basanitic and ankaramitic dykes gave rise to unusual, zebra-like migmatites, in the contact aureole of a layered pyroxenite-gabbro intrusion, in the root zone of an ocean island (Basal Complex, Fuerteventura, Canary Islands). These migmatites are characterised by a dense network of closely spaced, millimetre-wide leucocratic segregations. Their mineralogy consists of plagioclase (An(32-36)), diopside, biotite, oxides (magnetite, ilmenite), +/-amphibole, dominated by plagioclase in the leucosome and diopside in the melanosome. The melanosome is almost completely recrystallised, with the preservation of large, relict igneous diopside phenocrysts in dyke centres. Comparison of whole-rock and mineral major- and trace-element data allowed us to assess the redistribution of elements between different mineral phases and generations during contact metamorphism and partial melting. Dykes within and outside the thermal aureole behaved like closed chemical systems. Nevertheless, Zr, Hf, Y and REEs were internally redistributed, as deduced by comparing the trace element contents of the various diopside generations. Neocrystallised diopside - in the melanosome, leucosome and as epitaxial phenocryst rims - from the migmatite zone, are all enriched in Zr, Hf, Y and REEs compared to relict phenocrysts. This has been assigned to the liberation of trace elements on the breakdown of enriched primary minerals, kaersutite and sphene, on entering the thermal aureole. Major and trace element compositions of minerals in migmatite melanosomes and leucosomes are almost identical, pointing to a syn- or post-solidus reequilibration on the cooling of the migmatite terrain i.e. mineral-melt equilibria were reset to mineral-mineral equilibria. (C) 2007 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Amnestic mild cognitive impairment (aMCI) is characterized by memory deficits alone (single-domain, sd-aMCI) or associated with other cognitive disabilities (multi-domain, md-aMCI). The present study assessed the patterns of electroencephalographic (EEG) activity during the encoding and retrieval phases of short-term memory in these two aMCI subtypes, to identify potential functional differences according to the neuropsychological profile. Continuous EEG was recorded in 43 aMCI patients, whose 16 sd-aMCI and 27 md-aMCI, and 36 age-matched controls (EC) during delayed match-to-sample tasks for face and letter stimuli. At encoding, attended stimuli elicited parietal alpha (8-12 Hz) power decrease (desynchronization), whereas distracting stimuli were associated with alpha power increase (synchronization) over right central sites. No difference was observed in parietal alpha desynchronization among the three groups. For attended faces, the alpha synchronization underlying suppression of distracting letters was reduced in both aMCI subgroups, but more severely in md-aMCI cases that differed significantly from EC. At retrieval, the early N250r recognition effect was significantly reduced for faces in md-aMCI as compared to both sd-aMCI and EC. The results suggest a differential alteration of working memory cerebral processes for faces in the two aMCI subtypes, face covert recognition processes being specifically altered in md-aMCI.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

These experiments were designed to analyze how medial septal lesions reducing the cholinergic innervation in the hippocampus might affect place learning. Rats with quisqualic lesions of the medial septal area (MS) were trained in a water maze and on a homing table where the escape position was located at a spatially fixed position and further indicated by a salient cue suspended above it. The lesioned rats were significantly impaired in reaching the cued escape platform during training. In addition rats, did not show any discrimination of the training sector during a probe trial in which no platform or cue was present. This impairment remained significant during further training in the absence of the cue. When the cued escape platform was located at an unpredictable spatial location, the MS-lesioned rats showed no deficit and spent more time under the cue than control rats during the probe trial. On the homing board, with a salient object in close proximity to the escape hole, the MS rats showed no deficit in escape latencies, although a significant reduction in spatial memory was observed. However, this was overcome by additional training in the absence of the cue. Under these conditions, rats with septal lesions were prone to develop a pure guidance strategy, whereas normal rats combined a guidance strategy with a memory of the escape position relative to more distant landmarks. The presence of a salient cue appeared to decrease attention to environmental landmarks, thus reducing spatial memory. These data confirm the general hypothesis that MS lesions reduce the capacity to rely on a representation of the relation between several landmarks with different salience.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Résumé : L'amygdale latérale (AL) joue un .rôle essentiel dans la plasticité synaptique à la base du conditionnement de la peur. Malgré le faite que la majorité des cellules de l'AL reçoivent les afférentes nécessaires, une potentialisation dans seulement une partie d'entre elles est obligatoire afin que l'apprentissage de la peur ait lieu. Il a été montré que ces cellules expriment la forme active de CREB, et celui-ci a été associé aux cellules dites de type 'nonaccomrnodating' (nAC). Très récemment, une étude a impliqué les circuits récurrents de l'AL dans le conditionnement de la peur. Un lien entre ces deux observations n'a toutefois jamais été établi. t Nous avons utilisé un protocole in vitro de forte activation de l'AL, résultant dans l'induction de 'bursts' provenant de l'hippocampe et se propageant jusqu'à l'AL. Dans l'AL ces 'bursts' atteignent toutes les cellules et se propagent à travers plusieurs chemins. Utilisant ce protocole, nous avons, pour la première fois pu associer dans l'AL, des cellules connectées de manière récurrente avec des cellules de type nAC. Aussi bien dans ces dernières que dans les cellules de type 'accommodating' (AC), une diminution dans la transmission inhibitrice, à la fois exprimée de manière pré synaptique mais également indépendant de la synthèse de protéine a pu être observé. Au contraire, une potentialisation induite et exprimée au niveau pré synaptique ainsi que dépendante de la synthèse de protéine a pu être trouvé uniquement dans les cellules de type nAC. De plus, une hyperexcitabilité, dépendante des récepteurs NMDA a pu être observé, avec une sélection préférentielle des cellules du type nAC dans la génération de bursts. Nous avons également pu démontrer que la transformation d'un certain nombre de cellules de type AC en cellules dites nAC accompagnait cette augmentation générale de l'excitabilité de l'AL. Du faite da la grande quantité d'indices suggérant une connexion entre le système noradrénergique et les états de peur/d'anxiété, les effets d'une forte activation de l'AL sur ce dernier ont été investigués et ont révélés une perte de sa capacité de modulation du 'spiking pattern'. Finalement, des changements au niveau de l'expression d'un certain nombre de gènes, incluant celui codant pour le BDNF, a pu être trouvé à la suite d'une forte activation de l'AL. En raison du lien récemment décrit entre l'expression de la forme active de CREB et des cellules de type nAC ainsi que celui de l'implication des cellules de l'AL connectés de manière récurrente dans l'apprentissage de la peur, nos résultats nous permettent de suggérer un modèle expliquant comment la potentialisation des connections récurrentes entre cellules de type nAC pourrait être à la base de leur recrutement sélectif pendant le conditionnement de la peur. De plus, ils peuvent offrir des indices par rapport aux mécanismes à travers lesquels une sous population de neurones peut être réactivée par une stimulation externe précédemment inefficace, et induire ainsi un signal suffisamment fort pour qu'il soit transmit aux structures efférentes de l'AL. Abstract : The lateral nucleus of the amygdala (LA) is critically involved in the plasticity underlying fear-conditioned learning (Sah et al., 2008). Even though the majority of cells in the LA receive the necessary sensory inputs, potentiation in only a subset is required for fear learning to occur (Repa et al., 2001; Rumpel et al., 2005). These cells express active CREB (CAMP-responsive element-binding protein) (Han et al., 200, and this was related to the non-accommodating (nAC) spiking phenotype (Viosca et al., 2009; Zhou et al., 2009). In addition, a very recent study implicated recurrently connected cells of the LA in fear conditioned learning (Johnson et al., 2008). A link between the two observations has however never been made. In rats, we used an in vitro protocol of strong activation of the LA, resulting in bursting activity, which spread from the hippocampus to the LA. Within the LA, this activity reached all cells and spread via a multitude of pathways. Using this model, we were able to link, for the first time, recurrently connected cells in the LA with cells of the nAC phenotype. While we found a presynaptically expressed, protein synthesis independent decrease in inhibitory synaptic transmission in both nAC and accommodating (AC) cells, only nAC cells underwent a presynaptically induced and expressed, protein synthesis dependent potentiation. Moreover we observed an NMDA dependent hyperexcitability of the LA, with a preferential selection of nAC cells into burst generation. The transformation of a subset of AC cells into nAC cells accompanied this general increase in LA excitability. Given the considerable evidence suggesting a relationship between the central noradrenergic (NA) system and fear/anxiety states (Itoi, 2008), the effects of strong activation of the LA on the noradrenergic system were investigated, which revealed a loss of its modulatory actions on cell spiking patterns. Finally, we found changes in the expression levels of a number of genes; among which the one coding for $DNF, to be induced by strong activation of the LA. In view of the recently described link between nAC cells and expression of pCREB (phosphorylated cAMP-responsive element-binding protein) as well as the involvement of recurrently connected cells of the LA in fear-conditioned learning, our findings may provide a model of how potentiation of recurrent connections between nAC neurons underlies their recruitment into the fear memory trace. Additionally, they may offer clues as to the mechanisms through which a selected subset of neurons can be reactivated by smaller, previously ineffective external stimulations to respond with a sufficiently strong signal, which can be transmitted to downstream targets of the LA.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Activation dynamics of hippocampal subregions during spatial learning and their interplay with neocortical regions is an important dimension in the understanding of hippocampal function. Using the (14C)-2-deoxyglucose autoradiographic method, we have characterized the metabolic changes occurring in hippocampal subregions in mice while learning an eight-arm radial maze task. Autoradiogram densitometry revealed a heterogeneous and evolving pattern of enhanced metabolic activity throughout the hippocampus during the training period and on recall. In the early stages of training, activity was enhanced in the CA1 area from the intermediate portion to the posterior end as well as in the CA3 area within the intermediate portion of the hippocampus. At later stages, CA1 and CA3 activations spread over the entire longitudinal axis, while dentate gyrus (DG) activation occurred from the anterior to the intermediate zone. Activation of the retrosplenial cortex but not the amygdala was also observed during the learning process. On recall, only DG activation was observed in the same anterior part of the hippocampus. These results suggest the existence of a functional segmentation of the hippocampus, each subregion being dynamically but also differentially recruited along the acquisition, consolidation, and retrieval process in parallel with some neocortical sites.