257 resultados para Lymphoblastic leukemia
Resumo:
Invasive opportunistic fungal diseases (IFDs) are important causes of morbidity and mortality in paediatric patients with cancer and those who have had an allogeneic haemopoietic stem-cell transplantation (HSCT). Apart from differences in underlying disorders and comorbidities relative to those of adults, IFDs in infants, children, and adolescents are unique with respect to their epidemiology, the usefulness of diagnostic methods, the pharmacology and dosing of antifungal agents, and the absence of interventional phase 3 clinical trials for guidance of evidence-based decisions. To better define the state of knowledge on IFDs in paediatric patients with cancer and allogeneic HSCT and to improve IFD diagnosis, prevention, and management, the Fourth European Conference on Infections in Leukaemia (ECIL-4) in 2011 convened a group that reviewed the scientific literature on IFDs and graded the available quality of evidence according to the Infectious Diseases Society of America grading system. The final considerations and recommendations of the group are summarised in this manuscript.
Resumo:
Cytogenic analysis of leukemic cells has proven to be a mandatory part of the diagnosis of malignant hemopathies. Recurring clonal cytogenetic abnormalities may be divided into those exclusively associated with myeloid disorders, those uniquely observed in lymphoid diseases, and those detected in both myeloid and lymphoid hemopathies. Several of the common defects are characteristic of specific FAB types or subtypes and are associated with specific clinico pathologic syndromes and clinical complications. Cytogenetic abnormalities have served to define relatively homogeneous subsets of malignant hemopathies which are not evident from morphological and other available markers. Cytogenetic findings have been demonstrated to be powerful indicators in predicting clinical course and outcome in patients and in guiding their management. Given the significant progress made in the treatment of malignant hemopathies, it is very important to identify parameters which may be used to predict whether patients will respond favorably to standard therapies or if they are unlikely to do so and require alternative strategies, such as bone marrow transplantation. Cytogenetic studies have also provided important insights into the understanding of malignant transformation processes. In a number of recurring chromosome translocations characteristic of leukemias and lymphomas the genes that are located at the breakpoints have been identified. Molecular analysis has revealed that alteration in expression of these genes or in the properties of the encoded proteins resulting from the rearrangements plays an integral part in malignant transformation. Studies of clonality have suggested that several chromosome abnormalities may arise in pluripotent hemopoietic stem cells, whereas others may originate in cells of more restricted lineage. The author focuses first on the implications of the karyotype in the diagnosis and the prognosis of myeloproliferative syndromes, acute leukemias and myelodysplastic syndromes, then on the interest of describing new clinical-cytogenetic associations. Finally, some of the recent results obtained in a cytogenetic study of myelodysplastic syndromes are discussed.
Resumo:
The Arabidopsis mutant pho1 is deficient in the transfer of Pi from root epidermal and cortical cells to the xylem. The PHO1 gene was identified by a map-based cloning strategy. The N-terminal half of PHO1 is mainly hydrophilic, whereas the C-terminal half has six potential membrane-spanning domains. PHO1 shows no homology with any characterized solute transporter, including the family of H(+)-Pi cotransporters identified in plants and fungi. PHO1 shows highest homology with the Rcm1 mammalian receptor for xenotropic murine leukemia retroviruses and with the Saccharomyces cerevisiae Syg1 protein involved in the mating pheromone signal transduction pathway. PHO1 is expressed predominantly in the roots and is upregulated weakly under Pi stress. Studies with PHO1 promoter-beta-glucuronidase constructs reveal predominant expression of the PHO1 promoter in the stelar cells of the root and the lower part of the hypocotyl. There also is beta-glucuronidase staining of endodermal cells that are adjacent to the protoxylem vessels. The Arabidopsis genome contains 10 additional genes showing homology with PHO1. Thus, PHO1 defines a novel class of proteins involved in ion transport in plants.
Resumo:
Using both conventional fluorescence and confocal laser scanning microscopy we have investigated whether or not stabilization of isolated human erythroleukemic nuclei with sodium tetrathionate can maintain in the nuclear matrix the same spatial distribution of three polypeptides (M(r) 160 kDa and 125 kDa, previously shown to be components of the internal nuclear matrix plus the 180-kDa nucleolar isoform of DNA topoisomerase II) as seen in permeabilized cells. The incubation of isolated nuclei in the presence of 2 mM sodium tetrathionate was performed at 0 degrees C or 37 degrees C. The matrix fraction retained 20-40% of nuclear protein, depending on the temperature at which the chemical stabilization was executed. Western blot analysis revealed that the proteins studied were completely retained in the high-salt resistant matrix. Indirect immunofluorescence experiments showed that the distribution of the three antigens in the final matrix closely resembled that detected in permeabilized cells, particularly when the stabilization was performed at 37 degrees C. This conclusion was also strengthened by analysis of cells, isolated nuclei and the nuclear matrix by means of confocal laser scanning microscopy. We conclude that sodium tetrathionate stabilization of isolated nuclei does not alter the spatial distribution of some nuclear matrix proteins.
Resumo:
Background: Imatinib has revolutionized the treatment of chronic myeloid leukemia (CML) and gastrointestinal stromal tumors (GIST). Considering the large inter-individual differences in the function of the systems involved in its disposition, exposure to imatinib can be expected to vary widely among patients. This observational study aimed at describing imatinib pharmacokinetic variability and its relationship with various biological covariates, especially plasma alpha1-acid glycoprotein (AGP), and at exploring the concentration-response relationship in patients. Methods: A population pharmacokinetic model (NONMEM) including 321 plasma samples from 59 patients was built up and used to derive individual post-hoc Bayesian estimates of drug exposure (AUC; area under curve). Associations between AUC and therapeutic response or tolerability were explored by ordered logistic regression. Influence of the target genotype (i.e. KIT mutation profile) on response was also assessed in GIST patients. Results: A one-compartment model with first-order absorption appropriately described the data, with an average oral clearance of 14.3 L/h (CL) and volume of distribution of 347 L (Vd). A large inter-individual variability remained unexplained, both on CL (36%) and Vd (63%), but AGP levels proved to have a marked impact on total imatinib disposition. Moreover, both total and free AUC correlated with the occurrence and number of side effects (e.g. OR 2.9±0.6 for a 2-fold free AUC increase; p<0.001). Furthermore, in GIST patients, higher free AUC predicted a higher probability of therapeutic response (OR 1.9±0.5; p<0.05), notably in patients with tumor harboring an exon 9 mutation or wild-type KIT, known to decrease tumor sensitivity towards imatinib. Conclusion: The large pharmacokinetic variability, associated to the pharmacokinetic-pharmacodynamic relationship uncovered are arguments to further investigate the usefulness of individualizing imatinib prescription based on TDM. For this type of drug, it should ideally take into consideration either circulating AGP concentrations or free drug levels, as well as KIT genotype for GIST.
Resumo:
All-trans retinoic acid (ATRA) combined to anthracycline-based chemotherapy is the reference treatment of acute promyelocytic leukemia (APL). Whereas, in high-risk patients, cytarabine (AraC) is often considered useful in combination with anthracycline to prevent relapse, its usefulness in standard-risk APL is uncertain. In APL 2000 trial, patients with standard-risk APL [i.e., with baseline white blood cell (WBC) count <10,000/mm(3) ] were randomized between treatment with ATRA with Daunorubicin (DNR) and AraC (AraC group) and ATRA with DNR but without AraC (no AraC group). All patients subsequently received combined maintenance treatment. The trial had been prematurely terminated due to significantly more relapses in the no AraC group (J Clin Oncol, (24) 2006, 5703-10), but follow-up was still relatively short. With long-term follow-up (median 103 months), the 7-year cumulative incidence of relapses was 28.6% in the no AraC group, compared to 12.9% in the AraC group (P = 0.0065). In standard-risk APL, at least when the anthracycline used is DNR, avoiding AraC may lead to an increased risk of relapse suggesting that the need for AraC is regimen-dependent.
Resumo:
Microsatellites are important highly polymorphic genetic markers dispersed in the human genome. Using a panel of 22 (CA)n repeat microsatellite markers mapped to recurrent breakpoint cluster regions specifically involved in leukemia, we investigated 114 adult leukemias (25 acute lymphocytic leukemia [ALL], 32 acute myeloid leukemia [AML], 36 chronic lymphocytic leukemia [CLL], and 21 chronic myeloid leukemia [CML] in chronic phase) for somatic mutations at these loci. In each patient, DNA from fresh leukemia samples was analyzed alongside normal constitutive DNA from buccal epithelium. We detected loss of heterozygosity (LOH) in 81 of 114 patients (ALL 16/25, AML 25/32, CLL 30/36, CML 10/21). Deletions were most often seen in ALL at 11q23 and 19p13; in AML at 8q22 and 11q23; in CLL at 13q14.3, 11q13, and 11q23; and in CML at 3q26. Only six deletions were reported in 74 karyotypes analyzed, whereas in these same cases, 91 LOH events were detected by microsatellites. Of 26 leukemias with a normal karyotype, 16 nevertheless showed at least one LOH by microsatellite analysis. Replication errors were found in 10 of 114 patients (8.8%). Thus, microsatellite instability is rare in leukemia in contrast to many solid tumors. Our findings suggest that in adult leukemia, LOH may be an important genetic event in addition to typical chromosomal translocations. LOH may point to the existence of tumor suppressor genes involved in leukemogenesis to a degree that has hitherto been underestimated.
Resumo:
A cytochemical marker such as alpha-naphthyl acetate esterase (ANAE) has been found useful for the morphological identification of the subset of T lymphocytes having receptors for Fcμ (TM cells). ANAE reaction on TM cells gives a typical pattern of one to four positive spots, whereas this pattern is not found on T cells with receptors for Fcγ (TG cells). ANAE is abundant in monocytes but not detectable in granulocytes. Herein another type of esterase activity, naphthol-AS-D chloroacetate esterase (NCAE), is described; it is known to be abundant in granulocytes and was found to give a specific pattern of reactivity with the subpopulation of large granular lymphocytes (LGL). This pattern of fine granular staining was observed not only on LGL present in the TG cell subpopulation but also in LGL present in the non-T, non-B cells. Fractions of peripheral blood mononuclear cells which were ènriched up to 80% in LGL by Percoll discontinuous density gradient gave a similar percentage of specific NCAE pattern. In addition, among the different fractions from Percoll gradient, there was a good correlation (r = 0.94) between the number of NCAE-positive cells and the natural killer activity against the natural killer susceptible K562 target cells. It will be important to determine whether or not this enzymatic activity plays a role in the cytotoxic activities of LGL.
Resumo:
Mouse mammary tumor virus (MMTV) infects B lymphocytes and expresses a superantigen on the cell surface after integration of its reverse-transcribed genome. Superantigen-dependent B- and T-cell activation becomes detectable 2 to 3 days after infection. We show here that before this event, B cells undergo a polyclonal activation which does not involve massive proliferation. This first phase of B-cell activation is T cell independent. Moreover, during the first phase of activation, when only a small fraction of B cells is infected by MMTV(SW), viral DNA is detected only in activated B cells. Such a B-cell activation is also seen after injection of murine leukemia virus but not after injection of vaccinia virus, despite the very similar kinetics and intensity of the immune response. Since retroviruses require activated target cells to induce efficient infection, these data suggest that the early polyclonal retrovirus-induced target cell activation might play an important role in the establishment of retroviral infections.
Resumo:
A PRoliferation-Inducing TNF Ligand (APRIL) costimulates B-cell activation. When overexpressed in mice, APRIL induces B-cell neoplasia, reminiscent of human B-cell chronic lymphoid leukemia (B-CLL). We analyzed APRIL expression in situ in human non-Hodgkin lymphomas. APRIL up-regulation was only observed in high-grade B-cell lymphomas, diffuse large B-cell lymphoma (DLBCL), and Burkitt lymphoma (BL). Up-regulation was seen in 46% and 20% of DLBCL and BL, respectively. In DLBCL, neutrophils, constitutively producing APRIL and infiltrating the tumor tissue, were the main cellular source of APRIL. Rare DLBCL cases showed a predominance of histiocytes or mesenchymal cells as APRIL source. APRIL secreted by neutrophils accumulated on tumor cells via proteoglycan binding. In addition to proteoglycans, DLBCL tumor cells expressed the APRIL signaling receptor, TACI and/or BCMA, indicating that these tumor cells are fully equipped to respond to APRIL. A retrospective clinical analysis revealed a significant correlation between high expression of APRIL in tumor lesions and decreased overall patient survival rate. Hence, APRIL produced by inflammatory cells infiltrating lymphoma lesions may increase tumor aggressiveness and affect disease outcome.
Resumo:
Abstract The 5q deletion is a chromosomal abnormality that is observed in a subset of myelodysplastic syndromes (MDS). When isolated, this abnormality defines a specific clinical syndrome termed MDS associated with isolated deletion 5q, presenting with macrocytic anemia, normal platelet count or slight thrombocytosis, hypolobated megakaryocytes and fewer than 5% blasts in the bone marrow. MDS with the 5q deletion have a particular sensitivity to treatment with lenalidomide, a thalidomide analog. In this article, molecular changes in 5q- MDS derived from haploinsufficiency of genes encoded from the deleted region in 5q are reviewed, and mechanisms that link these molecular lesions with lenalidomide sensitivity are proposed.
Resumo:
Pneumocystis jirovecii pneumonia (PCP) is a common opportunistic infection. Microscopic diagnosis, including diagnosis using the Merifluor-Pneumocystis direct fluorescent antigen (MP-DFA) test, has limitations. Real-time PCR may assist in diagnosis, but no commercially validated real-time PCR assay has been available to date. MycAssay Pneumocystis is a commercial assay that targets the P. jirovecii mitochondrial large subunit (analytical detection limit, ≤3.5 copies/μl of sample). A multicenter trial recruited 110 subjects: 54 with transplants (40 with lung transplants), 32 with nonmalignant conditions, 13 with leukemia, and 11 with solid tumors; 9 were HIV positive. A total of 110 respiratory samples (92% of which were bronchoalveolar lavage [BAL] specimens) were analyzed by PCR. Performance was characterized relative to investigator-determined clinical diagnosis of PCP (including local diagnostic tests), and PCR results were compared with MP-DFA test results for 83 subjects. Thirteen of 14 subjects with PCP and 9/96 without PCP (including 5 undergoing BAL surveillance after lung transplantation) had positive PCR results; sensitivity, specificity, and positive and negative predictive values (PPV and NPV, respectively) were 93%, 91%, 59%, and 99%, respectively. Fourteen of 83 subjects for whom PCR and MP-DFA test results were available had PCP; PCR sensitivity, specificity, PPV, and NPV were 93%, 90%, 65%, and 98%, respectively, and MP-DFA test sensitivity, specificity, PPV, and NPV were 93%, 100%, 100%, and 98%. Of the 9 PCR-positive subjects without PCP, 1 later developed PCP. The PCR diagnostic assay compares well with clinical diagnosis using nonmolecular methods. Additional positive results compared with the MP-DFA test may reflect low-level infection or colonization.
Resumo:
Hematopoietic stem cells (HSCs) are the most primitive cells in the hematopoietic system and are under tight regulation for self-renewal and differentiation. Notch signals are essential for the emergence of definitive hematopoiesis in mouse embryos and are critical regulators of lymphoid lineage fate determination. However, it remains unclear how Notch regulates the balance between HSC self-renewal and differentiation in the adult bone marrow (BM). Here we report a novel mechanism that prevents HSCs from undergoing premature lymphoid differentiation in BM. Using a series of in vivo mouse models and functional HSC assays, we show that leukemia/lymphoma related factor (LRF) is necessary for HSC maintenance by functioning as an erythroid-specific repressor of Delta-like 4 (Dll4) expression. Lrf deletion in erythroblasts promoted up-regulation of Dll4 in erythroblasts, sensitizing HSCs to T-cell instructive signals in the BM. Our study reveals novel cross-talk between HSCs and erythroblasts, and sheds a new light on the regulatory mechanisms regulating the balance between HSC self-renewal and differentiation.
Resumo:
Two monoclonal antibodies (mAb) directed against idiotypic determinants of the T cell receptor (anti-Ti) from HPB-ALL cells induce interleukin 2 (IL2) production in Jurkat T cells without evidence of binding to these cells as judged by fluorescence-activated cell sorter (FACS) analysis, indirect antibody-binding radioimmunoassay and direct binding studies with 125I-labeled mAb. The IL2 response induced by these mAb observed both in the presence and absence of phorbol myristate acetate was in the range of that obtained when Jurkat cells were stimulated with phytohemagglutinin or anti-T3 mAb (Leu 4). The idiotypic specificity of the two anti-HPB-ALL Ti mAb was demonstrated by several criteria. Both mAb bound specifically to HPB-ALL cells as determined by radioimmunoassay or FACS analysis but not with 8 other T cell lines. The anti-HPB-ALL Ti mAb precipitated a disulfide-linked heterodimer of 85 kDa only from 125I-labeled HPB-ALL cells and not from other cell lines tested. Incubation of HPB-ALL cells with anti-T3 abrogated the expression of T3 and induced co-modulation of the idiotypic structures detected by the two anti-HPB-ALL Ti mAb. Conversely, incubation of HPB-ALL cells with either one of the anti-Ti mAb abrogated the expression of T3 and of the idiotypic structures. Our results suggest that mAb with an apparent unique specificity for the receptor of the immunizing T cell line HPB-ALL can activate Jurkat cells by a very weak cross-reaction with these cells, which is not detectable by conventional binding tests.