169 resultados para Light limited
Resumo:
The aim of this study was to prospectively assess the prevalence of orthoptic anomalies following conservative management of pure blowout orbital fractures and to evaluate their clinical relevance. Clinical and radiologic data of patients with unilateral conservatively managed pure blowout orbital fractures with a minimum follow-up of 6 months were reviewed. Eligible patients were contacted and invited to undergo an extended ophthalmologic examination as follows: distance and near visual acuities, Hertel exophthalmometry, corneal light reflex (Hirschberg test), ductions and versions in the 6 cardinal fields of gaze, eye deviation with prisms and alternate cover test in all of the 9-gaze directions with Maddox rod, degrees of incyclo/excyclotorsion with right and left eye fixation, horizontal and vertical deviation with Hess-Weiss coordimetry, degree of horizontal/vertical and incyclo/excyclotorsion deviation with Harms wall deviometry, and vertical deviation with Bielschowsky head-tilt test. Of the 69 patients contacted, 49 declined to participate given that they were asymptomatic. Twenty patients agreed to undergo the examination. One patient complained of minimal double vision limited to the extreme downgaze. Four patients had asymptomatic ocular motility disturbances limited to the extreme gaze. Seven patients had asymptomatic horizontal heterophoria. These disturbances did not interfere with daily or professional activities in any of the patients. The current study demonstrated that conservative management of pure orbital blowout fractures can result in orthoptic anomalies. These sequelae were restricted to a very limited portion of the binocular field of the vision and were not found to be clinically relevant.
Resumo:
PURPOSE: This study aims to identify which aspects of the pupil light reflex are most influenced by rods and cones independently by analyzing pupil recordings from different mouse models of photoreceptor deficiency. METHODS: One-month-old wild type (WT), rodless (Rho-/-), coneless (Cnga3-/-), or photoreceptor less (Cnga3-/-; Rho-/- or Gnat1-/-) mice were subjected to brief red and blue light stimuli of increasing intensity. To describe the initial dynamic response to light, the maximal pupillary constriction amplitudes and the derivative curve of the first 3 seconds were determined. To estimate the postillumination phase, the constriction amplitude at 9.5 seconds after light termination was related to the maximal constriction amplitude. RESULTS: Rho-/- mice showed decreased constriction amplitude but more prolonged pupilloconstriction to all blue and red light stimuli compared to wild type mice. Cnga3-/- mice had constriction amplitudes similar to WT however following maximal constriction, the early and rapid dilation to low intensity blue light was decreased. To high intensity blue light, the Cnga3-/- mice demonstrated marked prolongation of the pupillary constriction. Cnga3-/-; Rho-/- mice had no pupil response to red light of low and medium intensity. CONCLUSIONS: From specific gene defective mouse models which selectively voided the rod or cone function, we determined that mouse rod photoreceptors are highly contributing to the pupil response to blue light stimuli but also to low and medium red stimuli. We also observed that cone cells mainly drive the partial rapid dilation of the initial response to low blue light stimuli. Thus photoreceptor dysfunction can be derived from chromatic pupillometry in mouse models.
Resumo:
Tumor necrosis factor (TNF)/TNF receptor (TNFR) superfamily members play essential roles in the development of the different phases of the immune response. Mouse LIGHT (TNFSF14) is a type II transmembrane protein with a C-terminus extracellular TNF homology domain (THD) that assembles in homotrimers and regulates the course of the immune responses by signaling through 2 receptors, the herpes virus entry mediator (HVEM, TNFSFR14) and the lymphotoxin β receptor (LTβR, TNFSFR3). LIGHT is a membrane-bound protein transiently expressed on activated T cells, natural killer (NK) cells and immature dendritic cells that can be proteolytically cleaved by a metalloprotease and released to the extracellular milieu. The immunotherapeutic potential of LIGHT blockade was evaluated in vivo. Administration of an antagonist of LIGHT interaction with its receptors attenuated the course of graft-versus-host reaction and recapitulated the reduced cytotoxic activity of LIGHT-deficient T cells adoptively transferred into non-irradiated semiallogeneic recipients. The lack of LIGHT expression on donor T cells or blockade of LIGHT interaction with its receptors slowed down the rate of T cell proliferation and decreased the frequency of precursor alloreactive T cells, retarding T cell differentiation toward effector T cells. The blockade of LIGHT/LTβR/HVEM pathway was associated with delayed downregulation of interleukin-7Rα and delayed upregulation of inducible costimulatory molecule expression on donor alloreactive CD8 T cells that are typical features of impaired T cell differentiation. These results expose the relevance of LIGHT/LTβR/HVEM interaction for the potential therapeutic control of the allogeneic immune responses mediated by alloreactive CD8 T cells that can contribute to prolong allograft survival.