290 resultados para Intensity Differences
Resumo:
Aim. To predict the fate of alpine interactions involving specialized species, using a monophagous beetle and its host-plant as a case study. Location. The Alps. Methods. We investigated genetic structuring of the herbivorous beetle Oreina gloriosa and its specific host-plant Peucedanum ostruthium. We used genome fingerprinting (in the insect and the plant) and sequence data (in the insect) to compare the distribution of the main gene pools in the two associated species and to estimate divergence time in the insect, a proxy for the temporal origin of the interaction. We quantified the similarity in spatial genetic structures by performing a Procrustes analysis, a tool from the shape theory. Finally, we simulated recolonization of an empty space analogous to the deglaciated Alps just after ice retreat by two lineages from two species showing unbalanced dependence, to examine how timing of the recolonization process, as well as dispersal capacities of associated species, could explain the observed pattern. Results. Contrasting with expectations based on their asymmetrical dependence, patterns in the beetle and plant were congruent at a large scale. Exceptions occurred at a regional scale in areas of admixture, matching known suture zones in Alpine plants. Simulations using a lattice-based model suggested these empirical patterns arose during or soon after recolonization, long after the estimated origin of the interaction c. 0.5 million years ago. Main conclusions. Species-specific interactions are scarce in alpine habitats because glacial cycles have limited opportunities for coevolution. Their fate, however, remains uncertain under climate change. Here we show that whereas most dispersal routes are paralleled at large scale, regional incongruence implies that the destinies of the species might differ under changing climate. This may be a consequence of the host-dependence of the beetle that locally limits the establishment of dispersing insects.
Resumo:
BACKGROUND: Segmental handling of sodium along the proximal and distal nephron might be heritable and different between black and white participants. METHODS: We randomly recruited 95 nuclear families of black South African ancestry and 103 nuclear families of white Belgian ancestry. We measured the (FENa) and estimated the fractional renal sodium reabsorption in the proximal (RNaprox) and distal (RNadist) tubules from the clearances of endogenous lithium and creatinine. In multivariable analyses, we studied the relation of RNaprox and RNadist with FENa and estimated the heritability (h) of RNaprox and RNadist. RESULTS: Independent of urinary sodium excretion, South Africans (n = 240) had higher RNaprox (unadjusted median, 93.9% vs. 81.0%; P < 0.001) than Belgians (n = 737), but lower RNadist (91.2% vs. 95.1%; P < 0.001). The slope of RNaprox on FENa was steeper in Belgians than in South Africans (-5.40 +/- 0.58 vs. -0.78 +/- 0.58 units; P < 0.001), whereas the opposite was true for the slope of RNadist on FENa (-3.84 +/- 0.19 vs. -13.71 +/- 1.30 units; P < 0.001). h of RNaprox and RNadist was high and significant (P < 0.001) in both countries. h was higher in South Africans than in Belgians for RNaprox (0.82 vs. 0.56; P < 0.001), but was similar for RNadist (0.68 vs. 0.50; P = 0.17). Of the filtered sodium load, black participants reabsorb more than white participants in the proximal nephron and less postproximally. CONCLUSION: Segmental sodium reabsorption along the nephron is highly heritable, but the capacity for regulation in the proximal and postproximal tubules differs between whites and blacks.
Resumo:
Aims: We performed a randomised controlled trial in children of both gender and different pubertal stages to determine whether a school-based physical activity (PA) program during a full schoolyear influences bone mineral content (BMC) and whether there are differences in response for boys and girls before and during puberty. Methods: Twenty-eight 1st and 5th grade classes were cluster randomised to an intervention (INT, 16 classes, n=297) and control (CON; 12 classes, n=205) group. The intervention consisted of a multi-component PA intervention including daily physical education during a full school year. Each lesson was predetermined, included about ten minutes of jumping or strength training exercises of various intensity and was the same for all children. Measurements included anthropometry (height and weight), tanner stages (by self-assessment), PA (by accelerometry) and BMC for total body, femoral neck, total hip and lumbar spine using dualenergy X-ray absorptiometry (DXA). Bone parameters were normalized for gender and tanner stage (pre- vs. puberty). Analyses were performed by a regression model adjusted for gender, baseline height, baseline weight, baseline PA, post-intervention tanner stage, baseline BMC, and cluster. Researchers were blinded to group allocation. Children in the control group did not know about the intervention arm. Results: 217 (57%) of 380 children who initially agreed to have DXA measurements had also post-intervention DXA and PA data. Mean age of prepubertal and pubertal children at baseline was 9.0±2.1 and 11.2±0.6 years, respectively. 47/114 girls and 68/103 boys were prepubertal at the end of the intervention. Compared to CON, children in INT showed statistically significant increases in BMC of total body (adjusted z-score differences: 0.123; 95%>CI 0.035 to 0.212), femoral neck (0.155; 95%>CI 0.007 to 0.302), and lumbar spine (0.127; 95%>CI 0.026 to 0.228). Importantly, there was no gender*group, but a tanner*group interaction consistently favoring prepubertal children. Conclusions: Our findings show that a general, but stringent school-based PA intervention can improve BMC in elementary school children. Pubertal stage, but not gender seems to determine bone sensitivity to physical activity loading.
Resumo:
Introduction: Prior repeated-sprints (6) has become an interesting method to resolve the debate surrounding the principal factors that limits the oxygen uptake (V'O2) kinetics at the onset of exercise [i.e., muscle O2 delivery (5) or metabolic inertia (3)]. The aim of this study was to compare the effects of two repeated-sprints sets of 6x6s separated by different recovery duration between the sprints on V'O2 and muscular de-oxygenation [HHb] kinetics during a subsequent heavy-intensity exercise. Methods: 10 male subjects performed a 6-min constant-load cycling test (T50) at intensity corresponding to half of the difference between V'O2max and the ventilatory threshold. Then, they performed two repeated-sprints sets of 6x6s all-out separated by different recovery duration between the sprints (S1:30s and S2:3min) followed, after 7-min-recovery, by the T50 (S1T50 and S2T50, respectively). V'O2, [HHb] of the vastus lateralis (VL) and surface electromyography activity [i.e., root-mean-square (RMS) and the median frequency of the power density spectrum (MDF)] from VL and vastus medialis (VM) were recorded throughout T50. Models using a bi-exponential function for the overall T50 and a mono-exponential for the first 90s of T50 were used to define V'O2 and [HHb] kinetics respectively. Results: V'O2 mean value was higher in S1 (2.9±0.3l.min-1) than in S2 (1.2±0.3l.min-1); (p<0.001). The peripheral blood flow was increased after sprints as attested by a higher basal heart rate (HRbaseline) (S1T50: +22%; S2T50: +17%; p≤0.008). Time delay [HHb] was shorter for S1T50 and S2T50 than for T50 (-22% for both; p≤0.007) whereas the mean response time of V'O2 was accelerated only after S1 (S1T50: 32.3±2.5s; S2T50: 34.4±2.6s; T50: 35.7±5.4s; p=0.031). There were no significant differences in RMS between the three conditions (p>0.05). MDF of VM was higher during the first 3-min in S1T50 than in T50 (+6%; p≤0.05). Conclusion: The study show that V'O2 kinetics was speeded by prior repeated-sprints with a short (30s) but not a long (3min) inter-sprints-recovery even though the [HHb] kinetics was accelerated and the peripheral blood flow was enhanced after both sprints. S1, inducing a greater PCr depletion (1) and change in the pattern of the fibres recruitment (increase in MDF) compared with S2, may decrease metabolic inertia (2), stimulate the oxidative phosphorylation activation (4) and accelerate V'O2 kinetics at the beginning of the subsequent high-intensity exercise.
Resumo:
ABSTRACT Fat oxidation kinetics: effect of exercise. During graded exercise, absolute whole body fat oxidation rates increase from low to moderate intensities, and then markedly decline at high intensities, implying an exercise intensity (Fatmax) at which the fat oxidation rate is maximal (MFO). The main aim of the present work was to examine the effect of exercise on whole body fat oxidation kinetics. For this purpose, a sinusoidal mathematical model (SIN) has been developped in the first study to provide an accurate description of the shape of fat oxidation kinetics during graded exercise, represented as a function of exercise intensity, and to determine Fatmax and MFO. The SIN model incorporates three independent variables (i.e., dilatation, symmetry, and translation) that correspond to main expected modulations of the basic fat oxidation curve because of factors such as mode of exercise or training status. The results of study 1 showed that the SIN model was a valuable tool to determine Fatmax and MFO, and to precisely characterize and quantify the different shape of fat oxidation kinetics through its three variables. The effectiveness of the SIN model to detect differences in fat oxidation kinetics induced by a specific factor was then confirmed in the second study, which quantitatively described and compared fat oxidation kinetics in two different popular modes of exercise: running and cycling. It was found that the mean fat oxidation kinetics during running was characterized by a greater dilatation and a rightward asymmetry compared with the symmetric parabolic curve in cycling. In the two subsequent studies, the effect of a prior endurance exercise of different intensities and durations on whole body fat oxidation kinetics was examined. Study 3 determined the impact of a 1-h continuous exercise bout at an exercise intensity corresponding to Fatmax on fat oxidation kinetics during a subsequent graded test, while study 4 investigated the effect of an exercise leading to a more pronounced muscle glycogen depletion. The results of these two latter studies showed that fat oxidation rates, MFO, and Fatmax were enhanced following endurance exercise, but were increased to a greater extent with a more severe mucle glycogen depletion, inducing therefore modifications in the postexercise fat oxidation kinetics (i.e., greater dilatation and rightward asymmetry). In perspective, further studies have been suggested 1) to assess physiological meaning of the three independent variables of the SIN model; and 2) to compare the effect of two different training programs on fat oxidation kinetics in obese subjects.
Resumo:
OBJECTIVES: We examined the social distribution of a comprehensive range of cardiovascular risk factors (CVRF) in a Swiss population and assessed whether socioeconomic differences varied by age and gender. METHODS: Participants were 2960 men and 3343 women aged 35-75 years from a population-based survey conducted in Lausanne, Switzerland (CoLaus study). Educational level was the indicator of socioeconomic status used in this study. Analyses were stratified by gender and age group (35-54 years; 55-75 years). RESULTS: There were large educational differences in the prevalence of CVRF such as current smoking (Δ = absolute difference in prevalence between highest and lowest educational group:15.1%/12.6% in men/women aged 35-54 years), physical inactivity (Δ = 25.3%/22.7% in men/women aged 35-54 years), overweight and obesity (Δ = 14.6%/14.8% in men/women aged 55-75 years for obesity), hypertension (Δ = 16.7%/11.4% in men/women aged 55-75 years), dyslipidemia (Δ = 2.8%/6.2% in men/women aged 35-54 years for high LDL-cholesterol) and diabetes (Δ = 6.0%/2.6% in men/women aged 55-75 years). Educational inequalities in the distribution of CVRF were larger in women than in men for alcohol consumption, obesity, hypertension and dyslipidemia (p<0.05). Relative educational inequalities in CVRF tended to be greater among the younger (35-54 years) than among the older age group (55-75 years), particularly for behavioral CVRF and abdominal obesity among men and for physiological CVRF among women (p<0.05). CONCLUSION: Large absolute differences in the prevalence of CVRF according to education categories were observed in this Swiss population. The socioeconomic gradient in CVRF tended to be larger in women and in younger persons.
Resumo:
Over the last 10 years, diffusion-weighted imaging (DWI) has become an important tool to investigate white matter (WM) anomalies in schizophrenia. Despite technological improvement and the exponential use of this technique, discrepancies remain and little is known about optimal parameters to apply for diffusion weighting during image acquisition. Specifically, high b-value diffusion-weighted imaging known to be more sensitive to slow diffusion is not widely used, even though subtle myelin alterations as thought to happen in schizophrenia are likely to affect slow-diffusing protons. Schizophrenia patients and healthy controls were scanned with a high b-value (4000s/mm(2)) protocol. Apparent diffusion coefficient (ADC) measures turned out to be very sensitive in detecting differences between schizophrenia patients and healthy volunteers even in a relatively small sample. We speculate that this is related to the sensitivity of high b-value imaging to the slow-diffusing compartment believed to reflect mainly the intra-axonal and myelin bound water pool. We also compared these results to a low b-value imaging experiment performed on the same population in the same scanning session. Even though the acquisition protocols are not strictly comparable, we noticed important differences in sensitivities in the favor of high b-value imaging, warranting further exploration.
Resumo:
In animal societies, cooperation for the common wealth and latent conflicts due to the selfish interests of individuals are in delicate balance. In many ant species, colonies contain multiple breeders and workers interact with nestmates of varying degrees of relatedness. Therefore, workers could increase their inclusive fitness by preferentially caring for their closest relatives, yet evidence for nepotism in insect societies remains scarce and controversial. We experimentally demonstrate that workers of the ant Formica exsecta do not discriminate between highly related and unrelated brood, but that brood viability differs between queens. We further show that differences in brood viability are sufficient to explain a relatedness pattern that has previously been interpreted as evidence for nepotism. Hence, our findings support the view that nepotism remains elusive in social insects and emphasize the need for further controlled experiments.
Resumo:
This study aimed to compare two different maximal incremental tests with different time durations [a maximal incremental ramp test with a short time duration (8-12 min) (STest) and a maximal incremental test with a longer time duration (20-25 min) (LTest)] to investigate whether an LTest accurately assesses aerobic fitness in class II and III obese men. Twenty obese men (BMI≥35 kg.m-2) without secondary pathologies (mean±SE; 36.7±1.9 yr; 41.8±0.7 kg*m-2) completed an STest (warm-up: 40 W; increment: 20 W*min-1) and an LTest [warm-up: 20% of the peak power output (PPO) reached during the STest; increment: 10% PPO every 5 min until 70% PPO was reached or until the respiratory exchange ratio reached 1.0, followed by 15 W.min-1 until exhaustion] on a cycle-ergometer to assess the peak oxygen uptake [Formula: see text] and peak heart rate (HRpeak) of each test. There were no significant differences in [Formula: see text] (STest: 3.1±0.1 L*min-1; LTest: 3.0±0.1 L*min-1) and HRpeak (STest: 174±4 bpm; LTest: 173±4 bpm) between the two tests. Bland-Altman plot analyses showed good agreement and Pearson product-moment and intra-class correlation coefficients showed a strong correlation between [Formula: see text] (r=0.81 for both; p≤0.001) and HRpeak (r=0.95 for both; p≤0.001) during both tests. [Formula: see text] and HRpeak assessments were not compromised by test duration in class II and III obese men. Therefore, we suggest that the LTest is a feasible test that accurately assesses aerobic fitness and may allow for the exercise intensity prescription and individualization that will lead to improved therapeutic approaches in treating obesity and severe obesity.
Resumo:
Understanding how natural environments shape phenotypic variation is a major aim in evolutionary biology. Here, we have examined clinal, likely genetically based variation in morphology among 19 populations of the fruit fly (Drosophila melanogaster) from Africa and Europe, spanning a range from sea level to 3000 m altitude and including locations approximating the southern and northern range limit. We were interested in testing whether latitude and altitude have similar phenotypic effects, as has often been postulated. Both latitude and altitude were positively correlated with wing area, ovariole number, and cell number. In contrast, latitude and altitude had opposite effects on the ratio between ovariole number and body size, which was negatively correlated with egg production rate per ovariole. We also used transgenic manipulation to examine how increased cell number affects morphology and found that larger transgenic flies, due to a higher number of cells, had more ovarioles, larger wings, and, unlike flies from natural populations, increased wing loading. Clinal patterns in morphology are thus not a simple function of changes in body size; instead, each trait might be subject to different selection pressures. Together, our results provide compelling evidence for profound similarities as well as differences between phenotypic effects of latitude and altitude.
Resumo:
The influence of social factors on birthweight and fetal and infant mortality was investigated in the Swiss birth cohort from 1979-85 (N = 519,933). The proportion of newborns with low-birthweight (less than 2500 g) was higher in lower social classes. Stillbirth-rate, neonatal and postneonatal mortality were higher in lower social classes, too. When controlling for birthweight, the increase in mortality in the lower social classes became somewhat less striking. Marked social differences in perinatal mortality were found in the newborns with normal weight, whereas almost no difference could be detected in the low-birthweight-group.
Resumo:
Toxicokinetic modeling is a useful tool to describe or predict the behavior of a chemical agent in the human or animal organism. A general model based on four compartments was developed in a previous study in order to quantify the effect of human variability on a wide range of biological exposure indicators. The aim of this study was to adapt this existing general toxicokinetic model to three organic solvents, which were methyl ethyl ketone, 1-methoxy-2-propanol and 1,1,1,-trichloroethane, and to take into account sex differences. We assessed in a previous human volunteer study the impact of sex on different biomarkers of exposure corresponding to the three organic solvents mentioned above. Results from that study suggested that not only physiological differences between men and women but also differences due to sex hormones levels could influence the toxicokinetics of the solvents. In fact the use of hormonal contraceptive had an effect on the urinary levels of several biomarkers, suggesting that exogenous sex hormones could influence CYP2E1 enzyme activity. These experimental data were used to calibrate the toxicokinetic models developed in this study. Our results showed that it was possible to use an existing general toxicokinetic model for other compounds. In fact, most of the simulation results showed good agreement with the experimental data obtained for the studied solvents, with a percentage of model predictions that lies within the 95% confidence interval varying from 44.4 to 90%. Results pointed out that for same exposure conditions, men and women can show important differences in urinary levels of biological indicators of exposure. Moreover, when running the models by simulating industrial working conditions, these differences could even be more pronounced. In conclusion, a general and simple toxicokinetic model, adapted for three well known organic solvents, allowed us to show that metabolic parameters can have an important impact on the urinary levels of the corresponding biomarkers. These observations give evidence of an interindividual variablity, an aspect that should have its place in the approaches for setting limits of occupational exposure.