190 resultados para In vitro infection


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The isolation of the four Xenopus laevis vitellogenin genes has been completed by the purification from a DNA library of the B2 gene together with its flanking sequences. The overlapping DNA fragments analyzed cover 34 kilobases. The B2 gene which has a length of 17.5 kilobases was characterized by heteroduplex and R-loop mapping in the electron microscope and by in vitro transcription in a HeLa whole-cell extract. Its structural organization is compared with that of the closely related B1 gene. The mRNA-coding sequence of about 6 kilobases is interrupted 34 times in the B1 gene and 33 times in the B2 gene. Sequence homology between the two genes was not only found in exons. In addition, 54% of the intron sequences as well as 63% and 48.5% respectively of the 5' and 3' flanking sequences, show enough homology to form stable duplexes. These findings are compared with earlier results obtained with the two other closely related members of the vitellogenin gene family, the A1 and the A2 genes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Doxorubicin (DOX) is a potent available antitumor agent; however, its clinical use is limited because of its cardiotoxicity. Cell death is a key component in DOX-induced cardiotoxicity, but its mechanisms are elusive. Here, we explore the role of superoxide, nitric oxide (NO), and peroxynitrite in DOX-induced cell death using both in vivo and in vitro models of cardiotoxicity. Western blot analysis, real-time PCR, immunohistochemistry, flow cytometry, fluorescent microscopy, and biochemical assays were used to determine the markers of apoptosis/necrosis and sources of NO and superoxide and their production. Left ventricular function was measured by a pressure-volume system. We demonstrated increases in myocardial apoptosis (caspase-3 cleavage/activity, cytochrome c release, and TUNEL), inducible NO synthase (iNOS) expression, mitochondrial superoxide generation, 3-nitrotyrosine (NT) formation, matrix metalloproteinase (MMP)-2/MMP-9 gene expression, poly(ADP-ribose) polymerase activation [without major changes in NAD(P)H oxidase isoform 1, NAD(P)H oxidase isoform 2, p22(phox), p40(phox), p47(phox), p67(phox), xanthine oxidase, endothelial NOS, and neuronal NOS expression] and decreases in myocardial contractility, catalase, and glutathione peroxidase activities 5 days after DOX treatment to mice. All these effects of DOX were markedly attenuated by peroxynitrite scavengers. Doxorubicin dose dependently increased mitochondrial superoxide and NT generation and apoptosis/necrosis in cardiac-derived H9c2 cells. DOX- or peroxynitrite-induced apoptosis/necrosis positively correlated with intracellular NT formation and could be abolished by peroxynitrite scavengers. DOX-induced cell death and NT formation were also attenuated by selective iNOS inhibitors or in iNOS knockout mice. Various NO donors when coadministered with DOX but not alone dramatically enhanced DOX-induced cell death with concomitant increased NT formation. DOX-induced cell death was also attenuated by cell-permeable SOD but not by cell-permeable catalase, the xanthine oxidase inhibitor allopurinol, or the NADPH oxidase inhibitors apocynine or diphenylene iodonium. Thus, peroxynitrite is a major trigger of DOX-induced cell death both in vivo and in vivo, and the modulation of the pathways leading to its generation or its effective neutralization can be of significant therapeutic benefit.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This study assessed the effects of the serotonin (5-HT) and norepinephrine (NE) transporter inhibitor duloxetine on the effects of 3,4-methylenedioxy-methamphetamine (MDMA, ecstasy) in vitro and in 16 healthy subjects. The clinical study used a double-blind, randomized, placebo-controlled, four-session, crossover design. In vitro, duloxetine blocked the release of both 5-HT and NE by MDMA or by its metabolite 3,4-methylenedioxyamphetamine from transmitter-loaded human cells expressing the 5-HT or NE transporter. In humans, duloxetine inhibited the effects of MDMA including elevations in circulating NE, increases in blood pressure and heart rate, and the subjective drug effects. Duloxetine inhibited the pharmacodynamic response to MDMA despite an increase in duloxetine-associated elevations in plasma MDMA levels. The findings confirm the important role of MDMA-induced 5-HT and NE release in the psychotropic effects of MDMA. Duloxetine may be useful in the treatment of psychostimulant dependence. TRIAL REGISTRATION: Clinicaltrials.gov NCT00990067.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Drug-eluting microspheres are used for embolization of hypervascular tumors and allow for local controlled drug release. Although the drug release from the microspheres relies on fast ion-exchange, so far only slow-releasing in vitro dissolution methods have been correlated to in vivo data. Three in vitro release methods are assessed in this study for their potential to predict slow in vivo release of sunitinib from chemoembolization spheres to the plasma, and fast local in vivo release obtained in an earlier study in rabbits. Release in an orbital shaker was slow (t50%=4.5h, 84% release) compared to fast release in USP 4 flow-through implant cells (t50%=1h, 100% release). Sunitinib release in saline from microspheres enclosed in dialysis inserts was prolonged and incomplete (t50%=9 days, 68% release) due to low drug diffusion through the dialysis membrane. The slow-release profile fitted best to low sunitinib plasma AUC following injection of sunitinib-eluting spheres. Although limited by lack of standardization, release in the orbital shaker fitted best to local in vivo sunitinib concentrations. Drug release in USP flow-through implant cells was too fast to correlate with local concentrations, although this method is preferred to discriminate between different sphere types.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND: Brain inflammation plays a central role in numerous brain pathologies, including multiple sclerosis (MS). Microglial cells and astrocytes are the effector cells of neuroinflammation. They can be activated also by agents such as interferon-gamma (IFN-gamma) and lipopolysaccharide (LPS). Peroxisome proliferator-associated receptor (PPAR) pathways are involved in the control of the inflammatory processes, and PPAR-beta seems to play an important role in the regulation of central inflammation. In addition, PPAR-beta agonists were shown to have trophic effects on oligodendrocytes in vitro, and to confer partial protection in experimental autoimmune encephalomyelitis (EAE), an animal model of MS. In the present work, a three-dimensional brain cell culture system was used as in vitro model to study antibody-induced demyelination and inflammatory responses. GW 501516, a specific PPAR-beta agonist, was examined for its capacity to protect from antibody-mediated demyelination and to prevent inflammatory responses induced by IFN-gamma and LPS. METHODS: Aggregating brain cells cultures were prepared from embryonal rat brain, and used to study the inflammatory responses triggered by IFN-gamma and LPS and by antibody-mediated demyelination induced by antibodies directed against myelin-oligodendrocyte glycoprotein (MOG). The effects of GW 501516 on cellular responses were characterized by the quantification of the mRNA expression of tumor necrosis factor-alpha (TNF-alpha), interleukin-6 (IL-6), inducible NO synthase (i-NOS), PPAR-beta, PPAR-gamma, glial fibrillary acidic protein (GFAP), myelin basic protein (MBP), and high molecular weight neurofilament protein (NF-H). GFAP expression was also examined by immunocytochemistry, and microglial cells were visualized by isolectin B4 (IB4) and ED1 labeling. RESULTS: GW 501516 decreased the IFN-gamma-induced up-regulation of TNF-alpha and iNOS in accord with the proposed anti-inflammatory effects of this PPAR-beta agonist. However, it increased IL-6 m-RNA expression. In demyelinating cultures, reactivity of both microglial cells and astrocytes was observed, while the expression of the inflammatory cytokines and iNOS remained unaffected. Furthermore, GW 501516 did not protect against the demyelination-induced changes in gene expression. CONCLUSION: Although GW 501516 showed anti-inflammatory activity, it did not protect against antibody-mediated demyelination. This suggests that the protective effects of PPAR-beta agonists observed in vivo can be attributed to their anti-inflammatory properties rather than to a direct protective or trophic effect on oligodendrocytes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Stable ternary transcription complexes assembled in vitro, using a HeLa whole-cell extract, have been isolated and visualized by electron microscopy. The formation of these stable complexes on the DNA fragment used as template, the 5' end region of the Xenopus laevis vitellogenin gene B2, depends on factors present in the whole-cell extract, RNA polymerase II and at least two nucleotides. Interestingly, bending in the DNA fragment was frequently observed at the binding site of RNA polymerase II. Dinucleotides that can prime initiation within a short sequence of approximately 10 contiguous nucleotides centered around the initiation site used in vivo, also favour the formation of stable complexes. In addition, pre-initiation complexes were isolated and it was shown that factors in the extract involved in their formation are more abundant than the RNA polymerase II molecules available for binding. The possible implication of this observation relative to the in vivo situation is discussed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Ultraviolet A (UVA) radiation represents an important oxidative stress to human skin and certain forms of oxidative stress have been shown to modulate intercellular adhesion molecule-1 (ICAM-1) expression. ICAM-1 has been shown to play an important part in many immune reactions and the perturbations of this molecule by ultraviolet radiation could have implications in many inflammatory responses. An enhancement immunohistochemical method with avidin/biotin was used for analysing the early effects of UVA radiation on human cell cultures and human skin (340-400 nm). Both in vitro and in vivo data show that ICAM-1 staining in epidermal keratinocytes, which was expressed constitutively, decreased in a UVA dose-dependent manner. The decrease was most noted at 3-6 h following UVA radiation with some ICAM-1 staining returning by 48 h post-UVA. ICAM-1 positive staining in the dermis was specific for vascular structures and was increased 24 h after UVA radiation. Cultured dermal fibroblasts exhibited ICAM-1 staining which increased slightly within 6-48 h post-UVA radiation. As epidermal ICAM-1 expression is depleted following UVA radiation and dermal expression increases due to an increase in the vascular structures, ICAM-1 provides a valuable marker following UVA radiation in human skin that can be readily measured in situ.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

(1R)-Normetanephrine is the natural stereoisomeric substrate for sulfotransferase 1A3 (SULT1A3)-catalyzed sulfonation. Nothing appears known on the enantioselectivity of the reaction despite its potential significance in the metabolism of adrenergic amines and in clinical biochemistry. We confronted the kinetic parameters of the sulfoconjugation of synthetic (1R)-normetanephrine and (1S)-normetanephrine by recombinant human SULT1A3 to a docking model of each normetanephrine enantiomer with SULT1A3 and the 3'-phosphoadenosine-5'-phosphosulfate cofactor on the basis of molecular modeling and molecular dynamics simulations of the stability of the complexes. The K(M) , V(max) , and k(cat) values for the sulfonation of (1R)-normetanephrine, (1S)-normetanephrine, and racemic normetanephrine were similar. In silico models were consistent with these findings as they showed that the binding modes of the two enantiomers were almost identical. In conclusion, SULT1A3 is not substrate-enantioselective toward normetanephrine, an unexpected finding explainable by a mutual adaptability between the ligands and SULT1A3 through an "induced-fit model" in the catalytic pocket. Chirality, 00:000-000, 2012.© 2012 Wiley Periodicals, Inc.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

La neuroinflammation joue un rôle important dans de nombreuses maladies neurodégéneratives dont la sclérose en plaques. Les microglies et les astrocytes sont les cellules effectrices de la réponse inflammatoire dans le cerveau et sont impliquées dans les processus de démyélinisation et de remyélinisation. Dans ce travail, nous avons étudié les réactions inflammatoires accompagnant la démyélinisation et leurs conséquences sur la remyélinisation. Dans ce but, trois différents traitements démyélinisants ont été appliqués sur des cultures en agrégats de télencéphales de rats, à savoir (i) la lysophosphatidylcholine, (ii) l'interféron-γ (IFN-γ) combiné avec du lipopolysaccharide (LPS), et (iii) des anticorps dirigés contre la MOG (myelin oligodendrocyte glycoprotein) en présence de complément. Nous avons montré que ces traitements induisent différents types de démyélinisation, de réponses inflammatoires et d'effets secondaires sur les neurones. Nous avons ensuite examiné les effets de l'atténuation de la réponse inflammatoire sur la démyélinisation et la remyélinisation, en utilisant la minocycline, un antibiotique bloquant la réactivité microgiale, et le GW 5501516, un agoniste de PPAR-β (peroxisome proliferator-activated receptor-β). Nous avons montré que la minocycline prévient l'activation microgliale induite par le traitement avec l'IFN-γ et le LPS, mais qu'elle ne protège pas de la démyélinisation. Néanmoins, elle induit une remyélinisation, probablement en favorisant la maturation d'oligodendrocytes immatures. Le GW 501516 diminue l'expression de l'IFN-γ après une démyélinisation induite par les anticorps anti-MOG, mais il ne prévient pas la démyélinisation et ne favorise pas la remyélinisation. Ces résultats indiquent que la démyélinisation induite par le traitement avec l'IFN-γ et le LPS n'est pas une conséquence directe de l'activation microgliale, et que l'augmentation de l'expression de l'IFN-γ ne participe pas à la démyélinisation induite par les anticorps anti-MOG. Ces résultats suggèrent que l'atténuation de l'activation microgliale est bénéfique pour la remyélinisation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

PURPOSE: To present in vitro loading and release characteristics of idarubicin with ONCOZENE (CeloNova BioSciences, Inc, San Antonio, Texas) drug-eluting embolic (DEE) agents and in vivo pharmacokinetics data after transarterial chemoembolization with idarubicin-loaded ONCOZENE DEE agents in patients with hepatocellular carcinoma. MATERIALS AND METHODS: Loading efficacy of idarubicin with ONCOZENE DEE agents 100 µm and DC Bead (Biocompatibles UK Ltd, Farnham, United Kingdom) DEE agents 100-300 µm was monitored at 10, 20, and 30 minutes loading time by high-pressure liquid chromatography. A T-apparatus was used to monitor the release of idarubicin from the two types of DEE agents over 12 hours. Clinical and 24-hour pharmacokinetics data were recorded after transarterial chemoembolization with idarubicin-loaded ONCOZENE DEE agents in four patients with unresectable hepatocellular carcinoma. RESULTS: Idarubicin loading in ONCOZENE DEE agents was > 99% at 10 minutes. Time to reach 75% of the release plateau level was 37 minutes ± 6 for DC Bead DEE agents and 170 minutes ± 19 for ONCOZENE DEE agents both loaded with idarubicin 10 mg/mL. After transarterial chemoembolization with idarubicin-loaded ONCOZENE DEE agents, three partial responses and one complete response were observed with only two asymptomatic grade 3 biologic adverse events. Median time to maximum concentration for idarubicin in patients was 10 minutes, and mean maximum concentration was 4.9 µg/L ± 1.7. Mean area under the concentration-time curve from 0-24 hours was equal to 29.5 µg.h/L ± 20.5. CONCLUSIONS: ONCOZENE DEE agents show promising results with very fast loading ability, a favorable in vivo pharmacokinetics profile with a sustained release of idarubicin during the first 24 hours, and encouraging safety and responses. Histopathologic and clinical studies are needed to evaluate idarubicin release around the DEE agents in tumor tissue and to confirm safety and efficacy.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Xenopus laevis vitellogenin B1 promoter was assembled into nucleosomes in an oocyte extract. Subsequent RNA polymerase II-dependent transcription from these DNA templates fully reconstituted in chromatin in a HeLa nuclear extract was increased 50-fold compared with naked DNA. Remarkably, under specific conditions, production of a high level of transcripts occurred at very low DNA (1 ng/microliter) and HeLa nuclear protein (1.6 micrograms/microliters) concentrations. When partially reconstituted templates were used, transcription efficiency was intermediate between that of fully reconstituted and naked DNA. These results implicate chromatin in the process of the transcriptional activation observed. Depletion from the oocyte assembly extract of an NF-I-like factor which binds in the promoter region upstream of the TATA box (-114 to -101) or deletion from the promoter of the region interacting with this factor reduced the transcriptional efficiency of the assembled templates by a factor of 5, but transcription of these templates was still 10 times higher than that of naked DNA. Together, these results indicate that the NF-I-like factor participates in the very efficient transcriptional potentiation of the vitellogenin B1 promoter which occurs during nucleosome assembly.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Extracorporeal life support systems (ECLS) have become common in cardiothoracic surgery, but are still "Terra Incognita" in other medical fields due to the fact that perfusion units are normally bound to cardiothoracic centres. The Lifebridge B2T is an ECLS that is meant to be used as an easy and fast-track extracorporeal cardiac support to provide short-term perfusion for the transport of a patient to a specialized centre. With the Lifebridge B2T it is now possible to provide extracorporeal bypass for patients in hospitals without a perfusion unit. The Lifebridge B2T was tested on three calves to analyze the handling, performance and security of this system. The Lifebridge B2T safely can be used clinically and can provide full extracorporeal support for patients in cardiac or pulmonary failure. Flows up to 3.9 +/- 0.2l/min were reached, with an inflow pressure of -103 +/- 13mmHg, using a 21Fr. BioMedicus (Medtronic, Minneapolis, MN, USA) venous cannula. The "Plug and Play" philosophy, with semi-automatic priming, integrated check-list, a long battery time of over two hours and instinctively designed user interface, makes this device very interesting for units with high-risk interventions, such as catheterisation labs. If a system is necessary in an emergency unit, the Lifebridge can provide a high security level, even in centres not acquainted with cardiopulmonary bypass.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The influence of human immunoglobulins (Ig) in neuronal cytoskeleton stability was studied in vitro. Here we show that human Ig and Fc fragments stimulate animal and human microtubule assembly by binding to microtubules via tau isoforms. In presence of Ig, microtubules show increased aggregation, twisting and rigidity. Non-immune Ig and Fc fragments promote microtubule assembly in temperature-dependent manner and stabilize microtubules at a molecular ratio of 1 Ig per 4 tubulin dimers. These in vitro data provide an experimental support for an immuno-mediated modulation of the cytoskeleton. In conjunction with previous neuropathological data, they suggest that Ig could participate in early stages of neurodegeneration by affecting the microtubule stability in vivo.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Microautophagy is the transfer of cytosolic components into the lysosome by direct invagination of the lysosomal membrane and subsequent budding of vesicles into the lysosomal lumen. This process is topologically equivalent to membrane invagination during multivesicular body formation and to the budding of enveloped viruses. Vacuoles are lysosomal compartments of yeasts. Vacuolar membrane invagination can be reconstituted in vitro with purified yeast vacuoles, serving as a model system for budding of vesicles into the lumen of an organelle. Using this in vitro system, we defined different reaction states. We identified inhibitors of microautophagy in vitro and used them as tools for kinetic analysis. This allowed us to characterize four biochemically distinguishable steps of the reaction. We propose that these correspond to sequential stages of vacuole invagination and vesicle scission. Formation of vacuolar invaginations was slow and temperature-dependent, whereas the final scission of the vesicle from a preformed invagination was fast and proceeded even on ice. Our observations suggest that the formation of invaginations rather than the scission of vesicles is the rate-limiting step of the overall reaction.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

There is a need for more efficient methods giving insight into the complex mechanisms of neurotoxicity. Testing strategies including in vitro methods have been proposed to comply with this requirement. With the present study we aimed to develop a novel in vitro approach which mimics in vivo complexity, detects neurotoxicity comprehensively, and provides mechanistic insight. For this purpose we combined rat primary re-aggregating brain cell cultures with a mass spectrometry (MS)-based metabolomics approach. For the proof of principle we treated developing re-aggregating brain cell cultures for 48h with the neurotoxicant methyl mercury chloride (0.1-100muM) and the brain stimulant caffeine (1-100muM) and acquired cellular metabolic profiles. To detect toxicant-induced metabolic alterations the profiles were analysed using commercial software which revealed patterns in the multi-parametric dataset by principal component analyses (PCA), and recognised the most significantly altered metabolites. PCA revealed concentration-dependent cluster formations for methyl mercury chloride (0.1-1muM), and treatment-dependent cluster formations for caffeine (1-100muM) at sub-cytotoxic concentrations. Four relevant metabolites responsible for the concentration-dependent alterations following methyl mercury chloride treatment could be identified using MS-MS fragmentation analysis. These were gamma-aminobutyric acid, choline, glutamine, creatine and spermine. Their respective mass ion intensities demonstrated metabolic alterations in line with the literature and suggest that the metabolites could be biomarkers for mechanisms of neurotoxicity or neuroprotection. In addition, we evaluated whether the approach could identify neurotoxic potential by testing eight compounds which have target organ toxicity in the liver, kidney or brain at sub-cytotoxic concentrations. PCA revealed cluster formations largely dependent on target organ toxicity indicating possible potential for the development of a neurotoxicity prediction model. With such results it could be useful to perform a validation study to determine the reliability, relevance and applicability of this approach to neurotoxicity screening. Thus, for the first time we show the benefits and utility of in vitro metabolomics to comprehensively detect neurotoxicity and to discover new biomarkers.