272 resultados para Gene-transcription
Resumo:
Glycogen synthase 2 (Gys-2) is the ratelimiting enzyme in the storage of glycogen in liver and adipose tissue, yet little is known about regulation of Gys-2 transcription. The peroxisome proliferator-activated receptors (PPARs) are transcription factors involved in the regulation of lipid and glucose metabolism and might be hypothesized to govern glycogen synthesis as well. Here, we show that Gys-2 is a direct target gene of PPARalpha, PPARbeta/delta and PPARgamma. Expression of Gys-2 is significantly reduced in adipose tissue of PPARalpha-/-, PPARbeta/delta-/- and PPARgamma+/- mice. Furthermore, synthetic PPARbeta/delta, and gamma agonists markedly up-regulate Gys-2 mRNA and protein expression in mouse 3T3-L1 adipocytes. In liver, PPARalpha deletion leads to decreased glycogen levels in the refed state, which is paralleled by decreased expression of Gys-2 in fasted and refed state. Two putative PPAR response elements (PPREs) were identified in the mouse Gys-2 gene: one in the upstream promoter (DR-1prom) and one in intron 1 (DR-1int). It is shown that DR-1int is the response element for PPARs, while DR-1prom is the response element for Hepatic Nuclear Factor 4 alpha (HNF4alpha). In adipose tissue, which does not express HNF4alpha, DR-1prom is occupied by PPARbeta/delta and PPARgamma, yet binding does not translate into transcriptional activation of Gys-2. Overall, we conclude that mouse Gys-2 is a novel PPAR target gene and that transactivation by PPARs and HNF4alpha is mediated by two distinct response elements.
Resumo:
Mutants were produced in the A-domain of HbpR, a protein belonging to the XylR family of σ(54)-dependent transcription activators, with the purpose of changing its effector recognition specificity from 2-hydroxybiphenyl (2-HBP, the cognate effector) to 2-chlorobiphenyl (2-CBP). Mutations were introduced in the hbpR gene part for the A-domain via error-prone polymerase chain reaction, and assembled on a gene circuitry plasmid in Escherichia coli, permitting HbpR-dependent induction of the enhanced green fluorescent protein (egfp). Cells with mutant HbpR proteins responsive to 2-CBP were enriched and separated in a flow cytometry-assisted cell-sorting procedure. Some 70 mutants were isolated and the A-domain mutations mapped. One of these had acquired true 2-CBP recognition but reacted hypersensitively to 2-HBP (20-fold more than the wild type), whereas others had reduced sensitivity to 2-HBP but a gain of 2-CBP recognition. Sequencing showed that most mutants carried double or triple mutations in the A-domain gene part, and were not located in previously recognized conserved residues within the XylR family members. Further selection from a new mutant pool prepared of the hypersensitive mutant did not result in increased 2-CBP or reduced 2-HBP recognition. Our data thus demonstrate that a one-step in vitro 'evolutionary' adaptation of the HbpR protein can result in both enhancement and reduction of the native effector recognition.
Resumo:
Type 2 diabetes is a polygenic and genetically heterogeneous disease . The age of onset of the disease is usually late and environmental factors may be required to induce the complete diabetic phenotype. Susceptibility genes for diabetes have not yet been identified. Islet-brain-1 (IB1, encoded by MAPK8IP1), a novel DNA-binding transactivator of the glucose transporter GLUT2 (encoded by SLC2A2), is the homologue of the c-Jun amino-terminal kinase-interacting protein-1 (JIP-1; refs 2-5). We evaluated the role of IBi in beta-cells by expression of a MAPK8IP1 antisense RNA in a stable insulinoma beta-cell line. A 38% decrease in IB1 protein content resulted in a 49% and a 41% reduction in SLC2A2 and INS (encoding insulin) mRNA expression, respectively. In addition, we detected MAPK8IP1 transcripts and IBi protein in human pancreatic islets. These data establish MAPK8IP1 as a candidate gene for human diabetes. Sibpair analyses performed on i49 multiplex French families with type 2 diabetes excluded MAPK8IP1 as a major diabetogenic locus. We did, however, identify in one family a missense mutation located in the coding region of MAPK8IP1 (559N) that segregated with diabetes. In vitro, this mutation was associated with an inability of IB1 to prevent apoptosis induced by MAPK/ERK kinase kinase 1 (MEKK1) and a reduced ability to counteract the inhibitory action of the activated c-JUN amino-terminal kinase (JNK) pathway on INS transcriptional activity. Identification of this novel non-maturity onset diabetes of the young (MODY) form of diabetes demonstrates that IB1 is a key regulator of 3-cell function.
Resumo:
Xenopus laevis oocytes were used to assay for trans-acting factors shown previously to be involved in the liver-specific regulation of the vitellogenin genes in vitro. To this end, crude liver nuclear extracts obtained from adult estrogen-induced Xenopus females were fractionated by heparin-Sepharose chromatography using successive elutions with 0.1, 0.35, 0.6, and 1.0 M KCl. When these four fractions were injected into oocytes, only the 0.6-M KCl protein fraction significantly stimulated mRNA synthesis from the endogenous B class vitellogenin genes. This same fraction induced estrogen-dependent in vitro transcription from the vitellogenin B1 promoter, suggesting that it contains at least a minimal set of basal transcription factors as well as two positive factors essential for vitellogenin in vitro transcription, i.e. the NF-I-like liver factor B and the estrogen receptor (ER). The presence of these two latter factors was determined by footprinting and gel retardation assays, respectively. In contrast, injection of an expression vector carrying the sequence encoding the ER was unable to activate transcription from the oocyte chromosomal vitellogenin genes. This suggests that the ER alone cannot overcome tissue-specific barriers and that one or several additional liver components participate in mediating tissue-specific expression of the vitellogenin genes. In this respect, we present evidence that the oocyte germinal vesicles contain an NF-I-like activity different from that found in hepatocytes of adult frogs. This observation might explain the lack of vitellogenin gene activation in oocytes injected with the ER cDNA only.
Resumo:
Certain fluorescent pseudomonads can protect plants from soil-borne pathogens, and it is important to understand how these biocontrol agents survive in soil. The persistence of the biocontrol strain Pseudomonas fluorescens CHA0-Rif under plough pan conditions was assessed in non-sterile soil microcosms by counting total cells (immunofluorescence microscopy), intact cells (BacLight membrane permeability test), viable cells (Kogure's substrate-responsiveness test) and culturable cells (colony counts on selective plates) of the inoculant. Viable but non-culturable cells of CHA0-Rif (106 cells g-1 soil) were found in flooded microcosms amended with fermentable organic matter, in which the soil redox potential was low (plough pan conditions), in agreement with previous observations of plough pan samples from a field inoculated with CHA0-Rif. However, viable but non-culturable cells were not found in unamended flooded, amended unflooded or unamended unflooded (i.e. control) microcosms, suggesting that such cells resulted from exposure of CHA0-Rif to a combination of low redox potential and oxygen limitation in soil. CHA0-Rif is strictly aerobic. Its anaerobic regulator ANR is activated by low oxygen concentrations and it controls production of the biocontrol metabolite hydrogen cyanide under microaerophilic conditions. Under plough pan conditions, an anr-deficient mutant of CHA0-Rif and its complemented derivative displayed the same persistence pattern as CHA0-Rif, indicating that anr was not implicated in the formation of viable but non-culturable cells of this strain at the plough pan.
Resumo:
Telomeres are associated with chromatin-mediated silencing of genes in their vicinity. However, how epigenetic markers mediate mammalian telomeric silencing and whether specific proteins may counteract this effect are not known. We evaluated the ability of CTF1, a DNA- and histone-binding transcription factor, to prevent transgene silencing at human telomeres. CTF1 was found to protect a gene from silencing when its DNA-binding sites were interposed between the gene and the telomeric extremity, while it did not affect a gene adjacent to the telomere. Protein fusions containing the CTF1 histone-binding domain displayed similar activities, while mutants impaired in their ability to interact with the histone did not. Chromatin immunoprecipitation indicated the propagation of a hypoacetylated histone structure to various extents depending on the telomere. The CTF1 fusion protein was found to recruit the H2A.Z histone variant at the telomeric locus and to restore high histone acetylation levels to the insulated telomeric transgene. Histone lysine trimethylations were also increased on the insulated transgene, indicating that these modifications may mediate expression rather than silencing at human telomeres. Overall, these results indicate that transcription factors can act to delimit chromatin domain boundaries at mammalian telomeres, thereby blocking the propagation of a silent chromatin structure.
Resumo:
Stimulation of resident cells by NF-κB activating cytokines is a central element of inflammatory and degenerative disorders of the central nervous system (CNS). This disease-mediated NF-κB activation could be used to drive transgene expression selectively in affected cells, using adeno-associated virus (AAV)-mediated gene transfer. We have constructed a series of AAV vectors expressing GFP under the control of different promoters including NF-κB -responsive elements. As an initial screen, the vectors were tested in vitro in HEK-293T cells treated with TNF-α. The best profile of GFP induction was obtained with a promoter containing two blocks of four NF-κB -responsive sequences from the human JCV neurotropic polyoma virus promoter, fused to a new tight minimal CMV promoter, optimally distant from each other. A therapeutical gene, glial cell line-derived neurotrophic factor (GDNF) cDNA under the control of serotype 1-encapsidated NF-κB -responsive AAV vector (AAV-NF) was protective in senescent cultures of mouse cortical neurons. AAV-NF was then evaluated in vivo in the kainic acid (KA)-induced status epilepticus rat model for temporal lobe epilepsy, a major neurological disorder with a central pathophysiological role for NF-κB activation. We demonstrate that AAV-NF, injected in the hippocampus, responded to disease induction by mediating GFP expression, preferentially in CA1 and CA3 neurons and astrocytes, specifically in regions where inflammatory markers were also induced. Altogether, these data demonstrate the feasibility to use disease-activated transcription factor-responsive elements in order to drive transgene expression specifically in affected cells in inflammatory CNS disorders using AAV-mediated gene transfer.
Resumo:
Plant growth and development are particularly sensitive to changes in the light environment and especially to vegetational shading. The shade-avoidance response is mainly controlled by the phytochrome photoreceptors. In Arabidopsis, recent studies have identified several related bHLH class transcription factors (PIF, for phytochrome-interacting factors) as important components in phytochrome signaling. In addition to a related bHLH domain, most of the PIFs contain an active phytochrome binding (APB) domain that mediates their interaction with light-activated phytochrome B (phyB). Here we show that PIF4 and PIF5 act early in the phytochrome signaling pathways to promote the shade-avoidance response. PIF4 and PIF5 accumulate to high levels in the dark, are selectively degraded in response to red light, and remain at high levels under shade-mimicking conditions. Degradation of these transcription factors is preceded by phosphorylation, requires the APB domain and is sensitive to inhibitors of the proteasome, suggesting that PIF4 and PIF5 are degraded upon interaction with light-activated phyB. Our data suggest that, in dense vegetation, which is rich in far-red light, shade avoidance is triggered, at least partially, as a consequence of reduced phytochrome-mediated degradation of transcription factors such as PIF4 and PIF5. Consistent with this idea, the constitutive shade-avoidance phenotype of phyB mutants partially reverts in the absence of PIF4 and PIF5
Resumo:
BACKGROUND: Several studies have established Glioblastoma Multiforme (GBM) prognostic and predictive models based on age and Karnofsky Performance Status (KPS), while very few studies evaluated the prognostic and predictive significance of preoperative MR-imaging. However, to date, there is no simple preoperative GBM classification that also correlates with a highly prognostic genomic signature. Thus, we present for the first time a biologically relevant, and clinically applicable tumor Volume, patient Age, and KPS (VAK) GBM classification that can easily and non-invasively be determined upon patient admission. METHODS: We quantitatively analyzed the volumes of 78 GBM patient MRIs present in The Cancer Imaging Archive (TCIA) corresponding to patients in The Cancer Genome Atlas (TCGA) with VAK annotation. The variables were then combined using a simple 3-point scoring system to form the VAK classification. A validation set (N = 64) from both the TCGA and Rembrandt databases was used to confirm the classification. Transcription factor and genomic correlations were performed using the gene pattern suite and Ingenuity Pathway Analysis. RESULTS: VAK-A and VAK-B classes showed significant median survival differences in discovery (P = 0.007) and validation sets (P = 0.008). VAK-A is significantly associated with P53 activation, while VAK-B shows significant P53 inhibition. Furthermore, a molecular gene signature comprised of a total of 25 genes and microRNAs was significantly associated with the classes and predicted survival in an independent validation set (P = 0.001). A favorable MGMT promoter methylation status resulted in a 10.5 months additional survival benefit for VAK-A compared to VAK-B patients. CONCLUSIONS: The non-invasively determined VAK classification with its implication of VAK-specific molecular regulatory networks, can serve as a very robust initial prognostic tool, clinical trial selection criteria, and important step toward the refinement of genomics-based personalized therapy for GBM patients.
Resumo:
The retinoid X receptor beta (RXR beta; H-2RIIBP) forms heterodimers with various nuclear hormone receptors and binds multiple hormone response elements, including the estrogen response element (ERE). In this report, we show that endogenous RXR beta contributes to ERE binding activity in nuclear extracts of the human breast cancer cell line MCF-7. To define a possible regulatory role of RXR beta regarding estrogen-responsive transcription in breast cancer cells, RXR beta and a reporter gene driven by the vitellogenin A2 ERE were transfected into estrogen-treated MCF-7 cells. RXR beta inhibited ERE-driven reporter activity in a dose-dependent and element-specific fashion. This inhibition occurred in the absence of the RXR ligand 9-cis retinoic acid. The RXR beta-induced inhibition was specific for estrogen receptor (ER)-mediated ERE activation because inhibition was observed in ER-negative MDA-MB-231 cells only following transfection of the estrogen-activated ER. No inhibition of the basal reporter activity was observed. The inhibition was not caused by simple competition of RXR beta with the ER for ERE binding, since deletion mutants retaining DNA binding activity but lacking the N-terminal or C-terminal domain failed to inhibit reporter activity. In addition, cross-linking studies indicated the presence of an auxiliary nuclear factor present in MCF-7 cells that contributed to RXR beta binding of the ERE. Studies using known heterodimerization partners of RXR beta confirmed that RXR beta/triiodothyronine receptor alpha heterodimers avidly bind the ERE but revealed the existence of another triiodothyronine-independent pathway of ERE inhibition. These results indicate that estrogen-responsive genes may be negatively regulated by RXR beta through two distinct pathways.
Resumo:
Like many organisms the fungal pathogen Candida albicans senses changes in the environmental CO(2) concentration. This response involves two major proteins: adenylyl cyclase and carbonic anhydrase (CA). Here, we demonstrate that CA expression is tightly controlled by the availability of CO(2) and identify the bZIP transcription factor Rca1p as the first CO(2) regulator of CA expression in yeast. We show that Rca1p upregulates CA expression during contact with mammalian phagocytes and demonstrate that serine 124 is critical for Rca1p signaling, which occurs independently of adenylyl cyclase. ChIP-chip analysis and the identification of Rca1p orthologs in the model yeast Saccharomyces cerevisiae (Cst6p) point to the broad significance of this novel pathway in fungi. By using advanced microscopy we visualize for the first time the impact of CO(2) build-up on gene expression in entire fungal populations with an exceptional level of detail. Our results present the bZIP protein Rca1p as the first fungal regulator of carbonic anhydrase, and reveal the existence of an adenylyl cyclase independent CO(2) sensing pathway in yeast. Rca1p appears to regulate cellular metabolism in response to CO(2) availability in environments as diverse as the phagosome, yeast communities or liquid culture.
Resumo:
A series of mutations, including 5' and 3' deletions, as well as insertions were introduced into the 5' flanking nucleotide sequence of a vaccinia virus late gene. This DNA has been shown previously to contain all the necessary elements for correct regulation of the gene most probably transcribed by the viral RNA polymerase. To facilitate the assays, the mutated DNA was fused to the chloramphenicol acetyltransferase gene and inserted into the genome of live vaccinia virus. The effects of the mutations on expression of the chimeric gene were studied by both enzyme assays and nuclease S1 analysis. The results showed that 5' deletions up to about 15 bp from the putative initiation site of transcription still yielded high levels of gene expression. All mutations, however, that deleted the authentic late mRNA start site, abolished promoter activity.
Resumo:
SUMMARY: ExpressionView is an R package that provides an interactive graphical environment to explore transcription modules identified in gene expression data. A sophisticated ordering algorithm is used to present the modules with the expression in a visually appealing layout that provides an intuitive summary of the results. From this overview, the user can select individual modules and access biologically relevant metadata associated with them. AVAILABILITY: http://www.unil.ch/cbg/ExpressionView. Screenshots, tutorials and sample data sets can be found on the ExpressionView web site.
Resumo:
Cardiac ventricular morphogenesis is a key developmental stage during which the ventricles grow considerably in size, but the transcriptional pathways controlling this process remains poorly understood. 14-3-3_ is a member of a conserved protein family that regulates a wide range of processes such as transcription, apoptosis and proliferation by binding to the phospho-serine/threonine residues of its target proteins. We found that deletion of the Ywhae gene (encoding 14-3-3_) in mice leads to abnormal ventricular morphogenesis and an embryonic cardiomyopathy (Cieslik KA et al, Circ. Res. 2008, abstract). Interestingly, we recently showed in cultured cells that the Ywhae gene is regulated directly by peroxisome proliferator-activated receptor _ (PPAR_) (Brunelli L et al, Circ. Res. 2007), a ligand-inducible nuclear receptor that controls energy metabolism and development. Postnatal cardiac-specific deletion of the Ppard gene in mice causes a lethal dilated cardiomyopathy, but it is still unknown whether PPAR_ regulates genes involved in heart development. We hypothesized that the expression of the Ywhae gene is responsive to PPAR_ during heart development. We confirmed that PPAR_ is expressed in the heart during development, and found higher expression at E10.5 compared to later gestational ages. We showed by immunofluorescence that a PPAR_ agonist (50 _M L-165,041 for 24 hr) upregulates 14-3-3_ in primary cardiomyocytes. We showed that when P19CL6 cells are driven towards cardiomyocyte lineage by dimethyl sulfoxide (DMSO), 14-3-3_ levels increase 4-fold, while L-165,041 treatment increases levels by an additional 50%. Based on previous work in mice (Leibowitz MD et al, FEBS Lett. 2000; Letavernier E et al, J. Am. Soc. Nephrol. 2005), we tested the response of Ywhae to PPAR_ in vivo . We fed 30 mg/kg/day L-165,041 to 14-3-3__/_ adult pregnant mice for 3 days starting at E9.5 and assessed Ywhae mRNA levels in embryonic hearts at E12.5. Baseline mRNA levels in Ywhae_/_ hearts were double that of Ywhae_/ hearts, while L-165,041 upregulated Ywhae mRNA levels in both Ywhae_/_ and Ywhae_/ hearts by 65%. These results indicate that Ywhae responds to PPAR_ in vivo, and suggest that PPAR_ regulates Ywhae during ventricular morphogenesis.
Resumo:
NF1 is a family of polypeptides that binds to discrete DNA motifs and plays varying roles in the regulation of gene expression. These polypeptides are also thought to mediate the expression of differentiation-specific markers such as adipocyte and mammary cell type-specific genes. The expression of a number of cellular differentiation-specific markers is down-regulated during neoplastic transformation. We therefore investigated whether oncogenic transformation interferes with the action of NF1. Stable transfection of activated Ha-ras into a number of murine cells correlated with a down-regulation of the expression of the NF1 genes NF1/CTF and NF1/X. The down-regulation was not at the transcriptional level but at the level of stability of the NF1 mRNAs. The level of the DNA binding activity of the NF1 proteins was also reduced in Ha-v-ras-transformed cells, and the expression of a gene that depends on this family of transcription factors was specifically repressed. These results demonstrate that an activated Ha-ras-induced pathway destabilizes the half-life of mRNAs encoding specific members in the NF1 family of transcription factors, which leads to a decrease in NF1-dependent gene expression.