197 resultados para Flow-pressure response
Resumo:
The biocontrol activity of the root-colonizing Pseudomonas fluorescens strain CHA0 is largely determined by the production of antifungal metabolites, especially 2,4-diacetylphloroglucinol. The expression of these metabolites depends on abiotic and biotic environmental factors, in particular, elements present in the rhizosphere. In this study, we have developed a new method for the in situ analysis of antifungal gene expression using flow cytometry combined with green fluorescent protein (GFP)-based reporter fusions to the phlA and prnA genes essential for the production of the antifungal compounds 2,4-diacetylphloroglucinol and pyrrolnitrin, respectively, in strain CHA0. Expression of phlA-gfp and prnA-gfp in CHA0 cells harvested from the rhizosphere of a set of plant species as well as from the roots of healthy, leaf pathogen-attacked, and physically stressed plants were analyzed using a FACSCalibur. After subtraction of background fluorescence emitted by plant-derived particles and CHA0 cells not carrying the gfp reporters, the average gene expression per bacterial cell could be calculated. Levels of phlA and prnA expression varied significantly in the rhizospheres of different plant species. Physical stress and leaf pathogen infection lowered phlA expression levels in the rhizosphere of cucumber. Our results demonstrate that the newly developed approach is suitable to monitor differences in levels of antifungal gene expression in response to various plant-derived factors. An advantage of the method is that it allows quantification of bacterial gene expression in rhizosphere populations at a single-cell level. To our best knowledge, this is the first study using flow cytometry for the in situ analysis of biocontrol gene expression in a plant-beneficial bacterium in the rhizosphere.
Resumo:
Non-invasive ambulatory blood pressure monitoring has proved to be very useful in evaluating hypertensive patients. However, most previous studies were performed in specialised centres. Here the results of two trials are presented in which private physicians used ambulatory BP monitoring to assess the efficacy of antihypertensive drugs. The results were very similar to those observed previously in specialised clinics. In the individual patient, the level of ambulatory recorded pressure could not be predicted based on BP readings taken at the doctor's office. Also, the BP response to antihypertensive therapy was more reproducible when evaluated by ambulatory BP monitoring than by the doctor. Thus, the use of noninvasive ambulatory BP monitoring is also very appropriate in everyday practice for the management of hypertensive patients.
Resumo:
OBJECTIVE: Fabry disease is an X-linked disorder resulting from alpha-galactosidase A deficiency. The cardiovascular findings include left ventricular hypertrophy (LVH) and increased intima-media thickness of the common carotid artery (CCA IMT). The current study examined the possible correlation between these parameters. To corroborate these clinical findings in vitro, plasma from Fabry patients was tested for possible proliferative effect on rat vascular smooth muscle cells (vascular smooth muscle cell [VSMC]) and mouse neonatal cardiomyocytes. METHODS AND RESULTS: Thirty male and 38 female patients were enrolled. LVH was found in 60% of men and 39% of women. Increased CCA IMT was equally present in males and females. There was a strong positive correlation between LV mass and CCA IMT (r2=0.27; P<0.0001). VSMC and neonatal cardiomyocyte proliferative response in vitro correlated with CCA IMT (r2=0.39; P<0.0004) and LV mass index (r2=0.19; P=0.028), respectively. CONCLUSIONS: LVH and CCA IMT occur concomitantly in Fabry suggesting common pathogenesis. The underlying cause may be a circulating growth-promoting factor whose presence has been confirmed in vitro.
Resumo:
S100A1 is a Ca(2+)-binding protein and predominantly expressed in the heart. We have generated a mouse line of S100A1 deficiency by gene trap mutagenesis to investigate the impact of S100A1 ablation on heart function. Electrocardiogram recordings revealed that after beta-adrenergic stimulation S100A1-deficient mice had prolonged QT, QTc and ST intervals and intraventricular conduction disturbances reminiscent of 2 : 1 bundle branch block. In order to identify genes affected by the loss of S100A1, we profiled the mutant and wild type cardiac transcriptomes by gene array analysis. The expression of several genes functioning to the electrical activity of the heart were found to be significantly altered. Although the default prediction would be that mRNA and protein levels are highly correlated, comprehensive immunoblot analyses of salient up- or down-regulated candidate genes of any cellular network revealed no significant changes on protein level. Taken together, we found that S100A1 deficiency results in cardiac repolarization delay and alternating ventricular conduction defects in response to sympathetic activation accompanied by a significantly different transcriptional regulation.
Resumo:
The general strategy to perform anti-doping analyses of urine samples starts with the screening for a wide range of compounds. This step should be fast, generic and able to detect any sample that may contain a prohibited substance while avoiding false negatives and reducing false positive results. The experiments presented in this work were based on ultra-high-pressure liquid chromatography coupled to hybrid quadrupole time-of-flight mass spectrometry. Thanks to the high sensitivity of the method, urine samples could be diluted 2-fold prior to injection. One hundred and three forbidden substances from various classes (such as stimulants, diuretics, narcotics, anti-estrogens) were analysed on a C(18) reversed-phase column in two gradients of 9min (including two 3min equilibration periods) for positive and negative electrospray ionisation and detected in the MS full scan mode. The automatic identification of analytes was based on retention time and mass accuracy, with an automated tool for peak picking. The method was validated according to the International Standard for Laboratories described in the World Anti-Doping Code and was selective enough to comply with the World Anti-Doping Agency recommendations. In addition, the matrix effect on MS response was measured on all investigated analytes spiked in urine samples. The limits of detection ranged from 1 to 500ng/mL, allowing the identification of all tested compounds in urine. When a sample was reported positive during the screening, a fast additional pre-confirmatory step was performed to reduce the number of confirmatory analyses.
Resumo:
Rupture of vulnerable plaques is the main cause of acute cardiovascular events. However, mechanisms responsible for transforming a stable into a vulnerable plaque remain elusive. Angiotensin II, a key regulator of blood pressure homeostasis, has a potential role in atherosclerosis. To study the contribution of angiotensin II in plaque vulnerability, we generated hypertensive hypercholesterolemic ApoE-/- mice with either normal or endogenously increased angiotensin II production (renovascular hypertension models). Hypertensive high angiotensin II ApoE-/- mice developed unstable plaques, whereas in hypertensive normal angiotensin II ApoE-/- mice plaques showed a stable phenotype. Vulnerable plaques from high angiotensin II ApoE-/- mice had thinner fibrous cap (P<0.01), larger lipid core (P<0.01), and increased macrophage content (P<0.01) than even more hypertensive but normal angiotensin II ApoE-/- mice. Moreover, in mice with high angiotensin II, a skewed T helper type 1-like phenotype was observed. Splenocytes from high angiotensin II ApoE-/- mice produced significantly higher amounts of interferon (IFN)-gamma than those from ApoE-/- mice with normal angiotensin II; secretion of IL4 and IL10 was not different. In addition, we provide evidence for a direct stimulating effect of angiotensin II on lymphocyte IFN-gamma production. These findings suggest a new mechanism in plaque vulnerability demonstrating that angiotensin II, within the context of hypertension and hypercholesterolemia, independently from its hemodynamic effect behaves as a local modulator promoting the induction of vulnerable plaques probably via a T helper switch.
Resumo:
Neuropeptide Y (NPY) is a peptide with vasoconstrictor properties known to be present in the central nervous system as well as in sympathetic nerve endings and the adrenal medulla. The purposes of this study were to investigate in normotensive conscious rats the effects of nonpressor doses of NPY on cardiac output and regional blood flow distribution (using radiolabeled microspheres) as well as on plasma renin activity, plasma catecholamine and vasopressin levels. NPY (0.1 microgram/min) infused i.v. for 30 min modified neither blood pressure nor heart rate. Cardiac index was at comparable levels in NPY- as in vehicle-treated rats (17.7 +/- 1.6, n = 8, vs. 21.3 +/- 0.9 ml/min/100 g, n = 8, mean +/- S.E.M.). There was no significant difference in regional blood flow distribution between the two groups of rats, except for the large intestine (0.42 +/- 0.06 vs. 0.71 +/- 0.1 ml/min/g in NPY- and vehicle-treated rats, respectively, P less than .05). Basal plasma renin activity and catecholamine levels were not modified by NPY whereas plasma vasopressin levels were lower (P less than .05) in rats given NPY (0.76 +/- 0.3 pg/ml, n = 8) than in those having received the vehicle (2.2 +/- 0.4 pg/ml).(ABSTRACT TRUNCATED AT 250 WORDS)
Resumo:
The flow of two immiscible fluids through a porous medium depends on the complex interplay between gravity, capillarity, and viscous forces. The interaction between these forces and the geometry of the medium gives rise to a variety of complex flow regimes that are difficult to describe using continuum models. Although a number of pore-scale models have been employed, a careful investigation of the macroscopic effects of pore-scale processes requires methods based on conservation principles in order to reduce the number of modeling assumptions. In this work we perform direct numerical simulations of drainage by solving Navier-Stokes equations in the pore space and employing the Volume Of Fluid (VOF) method to track the evolution of the fluid-fluid interface. After demonstrating that the method is able to deal with large viscosity contrasts and model the transition from stable flow to viscous fingering, we focus on the macroscopic capillary pressure and we compare different definitions of this quantity under quasi-static and dynamic conditions. We show that the difference between the intrinsic phase-average pressures, which is commonly used as definition of Darcy-scale capillary pressure, is subject to several limitations and it is not accurate in presence of viscous effects or trapping. In contrast, a definition based on the variation of the total surface energy provides an accurate estimate of the macroscopic capillary pressure. This definition, which links the capillary pressure to its physical origin, allows a better separation of viscous effects and does not depend on the presence of trapped fluid clusters.
Resumo:
Cardiovascular diseases are the principal cause of death in women in developed countries and are importantly promoted by hypertension. The salt sensitivity of blood pressure (BP) is considered as an important cardiovascular risk factor at any BP level. Preeclampsia is a hypertensive disorder of pregnancy that arises as a risk factor for cardiovascular diseases. This study measured the salt sensitivity of BP in women with a severe preeclampsia compared with women with no pregnancy hypertensive complications. Forty premenopausal women were recruited 10 years after delivery in a case-control study. Salt sensitivity was defined as an increase of >4 mm Hg in 24-hour ambulatory BP on a high-sodium diet. The ambulatory BP response to salt was significantly increased in women with a history of preeclampsia compared with that of controls. The mean (95% confidence interval) daytime systolic/diastolic BP increased significantly from 115 (109-118)/79 (76-82) mm Hg on low-salt diet to 123 (116-130)/80 (76-84) on a high-salt diet in women with preeclampsia, but not in the control group (from 111 [104-119]/77 [72-82] to 111 [106-116]/75 [72-79], respectively, P<0.05). The sodium sensitivity index (SSI=Δmean arterial pressure/Δurinary Na excretion×1000) was 51.2 (19.1-66.2) in women with preeclampsia and 6.6 (5.8-18.1) mm Hg/mol per day in controls (P=0.015). The nocturnal dip was blunted on a high-salt diet in women with preeclampsia. Our study shows that women who have developed preeclampsia are salt sensitive before their menopause, a finding that may contribute to their increased cardiovascular risk. Women with a history of severe preeclampsia should be targeted at an early stage for preventive measures of cardiovascular diseases.
Resumo:
Les problèmes d'écoulements multiphasiques en média poreux sont d'un grand intérêt pour de nombreuses applications scientifiques et techniques ; comme la séquestration de C02, l'extraction de pétrole et la dépollution des aquifères. La complexité intrinsèque des systèmes multiphasiques et l'hétérogénéité des formations géologiques sur des échelles multiples représentent un challenge majeur pour comprendre et modéliser les déplacements immiscibles dans les milieux poreux. Les descriptions à l'échelle supérieure basées sur la généralisation de l'équation de Darcy sont largement utilisées, mais ces méthodes sont sujettes à limitations pour les écoulements présentant de l'hystérèse. Les avancées récentes en terme de performances computationnelles et le développement de méthodes précises pour caractériser l'espace interstitiel ainsi que la distribution des phases ont favorisé l'utilisation de modèles qui permettent une résolution fine à l'échelle du pore. Ces modèles offrent un aperçu des caractéristiques de l'écoulement qui ne peuvent pas être facilement observées en laboratoire et peuvent être utilisé pour expliquer la différence entre les processus physiques et les modèles à l'échelle macroscopique existants. L'objet premier de la thèse se porte sur la simulation numérique directe : les équations de Navier-Stokes sont résolues dans l'espace interstitiel et la méthode du volume de fluide (VOF) est employée pour suivre l'évolution de l'interface. Dans VOF, la distribution des phases est décrite par une fonction fluide pour l'ensemble du domaine et des conditions aux bords particulières permettent la prise en compte des propriétés de mouillage du milieu poreux. Dans la première partie de la thèse, nous simulons le drainage dans une cellule Hele-Shaw 2D avec des obstacles cylindriques. Nous montrons que l'approche proposée est applicable même pour des ratios de densité et de viscosité très importants et permet de modéliser la transition entre déplacement stable et digitation visqueuse. Nous intéressons ensuite à l'interprétation de la pression capillaire à l'échelle macroscopique. Nous montrons que les techniques basées sur la moyenne spatiale de la pression présentent plusieurs limitations et sont imprécises en présence d'effets visqueux et de piégeage. Au contraire, une définition basée sur l'énergie permet de séparer les contributions capillaires des effets visqueux. La seconde partie de la thèse est consacrée à l'investigation des effets d'inertie associés aux reconfigurations irréversibles du ménisque causé par l'interface des instabilités. Comme prototype pour ces phénomènes, nous étudions d'abord la dynamique d'un ménisque dans un pore angulaire. Nous montrons que, dans un réseau de pores cubiques, les sauts et reconfigurations sont si fréquents que les effets d'inertie mènent à différentes configurations des fluides. A cause de la non-linéarité du problème, la distribution des fluides influence le travail des forces de pression, qui, à son tour, provoque une chute de pression dans la loi de Darcy. Cela suggère que ces phénomènes devraient être pris en compte lorsque que l'on décrit l'écoulement multiphasique en média poreux à l'échelle macroscopique. La dernière partie de la thèse s'attache à démontrer la validité de notre approche par une comparaison avec des expériences en laboratoire : un drainage instable dans un milieu poreux quasi 2D (une cellule Hele-Shaw avec des obstacles cylindriques). Plusieurs simulations sont tournées sous différentes conditions aux bords et en utilisant différents modèles (modèle intégré 2D et modèle 3D) afin de comparer certaines quantités macroscopiques avec les observations au laboratoire correspondantes. Malgré le challenge de modéliser des déplacements instables, où, par définition, de petites perturbations peuvent grandir sans fin, notre approche numérique apporte de résultats satisfaisants pour tous les cas étudiés. - Problems involving multiphase flow in porous media are of great interest in many scientific and engineering applications including Carbon Capture and Storage, oil recovery and groundwater remediation. The intrinsic complexity of multiphase systems and the multi scale heterogeneity of geological formations represent the major challenges to understand and model immiscible displacement in porous media. Upscaled descriptions based on generalization of Darcy's law are widely used, but they are subject to several limitations for flow that exhibit hysteric and history- dependent behaviors. Recent advances in high performance computing and the development of accurate methods to characterize pore space and phase distribution have fostered the use of models that allow sub-pore resolution. These models provide an insight on flow characteristics that cannot be easily achieved by laboratory experiments and can be used to explain the gap between physical processes and existing macro-scale models. We focus on direct numerical simulations: we solve the Navier-Stokes equations for mass and momentum conservation in the pore space and employ the Volume Of Fluid (VOF) method to track the evolution of the interface. In the VOF the distribution of the phases is described by a fluid function (whole-domain formulation) and special boundary conditions account for the wetting properties of the porous medium. In the first part of this thesis we simulate drainage in a 2-D Hele-Shaw cell filled with cylindrical obstacles. We show that the proposed approach can handle very large density and viscosity ratios and it is able to model the transition from stable displacement to viscous fingering. We then focus on the interpretation of the macroscopic capillary pressure showing that pressure average techniques are subject to several limitations and they are not accurate in presence of viscous effects and trapping. On the contrary an energy-based definition allows separating viscous and capillary contributions. In the second part of the thesis we investigate inertia effects associated with abrupt and irreversible reconfigurations of the menisci caused by interface instabilities. As a prototype of these phenomena we first consider the dynamics of a meniscus in an angular pore. We show that in a network of cubic pores, jumps and reconfigurations are so frequent that inertia effects lead to different fluid configurations. Due to the non-linearity of the problem, the distribution of the fluids influences the work done by pressure forces, which is in turn related to the pressure drop in Darcy's law. This suggests that these phenomena should be taken into account when upscaling multiphase flow in porous media. The last part of the thesis is devoted to proving the accuracy of the numerical approach by validation with experiments of unstable primary drainage in a quasi-2D porous medium (i.e., Hele-Shaw cell filled with cylindrical obstacles). We perform simulations under different boundary conditions and using different models (2-D integrated and full 3-D) and we compare several macroscopic quantities with the corresponding experiment. Despite the intrinsic challenges of modeling unstable displacement, where by definition small perturbations can grow without bounds, the numerical method gives satisfactory results for all the cases studied.
Resumo:
The cardiovascular system is under the control of the circadian clock, and disturbed circadian rhythms can induce cardiovascular pathologies. This cyclic regulation is probably brought about by the circadian expression of genes encoding enzymes and regulators involved in cardiovascular functions. We have previously shown that the rhythmic transcription of output genes is, in part, regulated by the clock-controlled PAR bZip transcription factors DBP (albumin D-element Binding Protein), HLF (Hepatic Leukemia Factor), and TEF (Thyrotroph Embryonic Factor). The simultaneous deletion of all three PAR bZip transcription factors leads to increased morbidity and shortened life span. Here, we demonstrate that Dbp/Tef/Hlf triple knockout mice develop cardiac hypertrophy and left ventricular dysfunction associated with a low blood pressure. These dysfunctions are exacerbated by an abnormal response to this low blood pressure characterized by low aldosterone levels. The phenotype of PAR bZip knockout mice highlights the importance of circadian regulators in the modulation of cardiovascular functions.
Resumo:
Cardiac hypertrophy is frequent in chronic hypertension. The renin-angiotensin system, via its effector angiotensin II (Ang II), regulates blood pressure and participates in sustaining hypertension. In addition, a growing body of evidence indicates that Ang II acts also as a growth factor. However, it is still a matter of debate whether the trophic effect of Ang II can trigger cardiac hypertrophy in the absence of elevated blood pressure. To address this question, transgenic mice overexpressing the rat angiotensinogen gene, specifically in the heart, were generated to increase the local activity of the renin-angiotensin system and therefore Ang II production. These mice develop myocardial hypertrophy without signs of fibrosis independently from the presence of hypertension, demonstrating that local Ang II production is important in mediating the hypertrophic response in vivo.
Resumo:
The present study is the first to examine the effect of high-altitude acclimatization and reexposure on the responses of cerebral blood flow and ventilation to CO2. We also compared the steady-state estimates of these parameters during acclimatization with the modified rebreathing method. We assessed changes in steady-state responses of middle cerebral artery velocity (MCAv), cerebrovascular conductance index (CVCi), and ventilation (V(E)) to varied levels of CO2 in 21 lowlanders (9 women; 21 ± 1 years of age) at sea level (SL), during initial exposure to 5,260 m (ALT1), after 16 days of acclimatization (ALT16), and upon reexposure to altitude following either 7 (POST7) or 21 days (POST21) at low altitude (1,525 m). In the nonacclimatized state (ALT1), MCAv and V(E) responses to CO2 were elevated compared with those at SL (by 79 ± 75% and 14.8 ± 12.3 l/min, respectively; P = 0.004 and P = 0.011). Acclimatization at ALT16 further elevated both MCAv and Ve responses to CO2 compared with ALT1 (by 89 ± 70% and 48.3 ± 32.0 l/min, respectively; P < 0.001). The acclimatization gained for V(E) responses to CO2 at ALT16 was retained by 38% upon reexposure to altitude at POST7 (P = 0.004 vs. ALT1), whereas no retention was observed for the MCAv responses (P > 0.05). We found good agreement between steady-state and modified rebreathing estimates of MCAv and V(E) responses to CO2 across all three time points (P < 0.001, pooled data). Regardless of the method of assessment, altitude acclimatization elevates both the cerebrovascular and ventilatory responsiveness to CO2. Our data further demonstrate that this enhanced ventilatory CO2 response is partly retained after 7 days at low altitude.
Resumo:
The objective of the study was to evaluate the tissue oxygenation and hemodynamic effects of NOS inhibition in clinical severe septic shock. Eight patients with septic shock refractory to volume loading and high level of adrenergic support were prospectively enrolled in the study. Increasing doses of NOS inhibitors [N(G)-nitro-L-arginine-methyl ester (L-NAME) or N(G)-monomethyl-L-arginine (L-NMMA)] were administered as i.v. bolus until a peak effect = 10 mmHg on mean blood pressure was obtained or until side effects occurred. If deemed clinically appropriate, a continuous infusion of L-NAME was instituted and adrenergic support weaning attempted. The bolus administration of NOS inhibitors transiently increased mean blood pressure by 10 mm Hg in all patients. Seven out of eight patients received an L-NAME infusion, associated over 24 h with a progressive decline in cardiac index (P < 0.001) and an increase in systemic vascular resistance (P < 0.01). Partial or total adrenergic support weaning was rapidly possible in 6/8 patients. Oxygen transport decreased (P < 0.001), but oxygen consumption remained unchanged in those patients in whom it could be measured by indirect calorimetry (5/8). Blood lactate and the difference between tonometric gastric and arterial PCO2 remained unchanged. There were 4/8 ICU survivors. We conclude that nitric oxide synthase inhibition in severe septic shock was followed with a progressive correction of the vasoplegic hemodynamic disturbances with finally normalization of cardiac output and systemic vascular resistances without any demonstrable deterioration in tissue oxygenation.