186 resultados para FINITE TOTAL CURVATURE


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Accurate measurement of knee kinematics during functional activities suffers mainly from soft tissue artifact (STA): the combination of local surface deformations and rigid movement of markers relative to the underlying bone (also called rigid STA movement: RSTAM). This study proposes to assess RSTAM on the thigh, shank, and knee joint and to observe possible features between subjects. Nineteen subjects with knee arthroplasty were asked to walk on a treadmill while a biplane fluoroscopic system (X-rays) and a stereophotogrammetric system (skin markers) recorded their knee movement. The RSTAM was defined as the rigid movement of the cluster of skin markers relative to the prosthesis. The results showed that RSTAM amplitude represents approximately 80-100% of the STA. The vertical axis of the anatomical frame of the femur was influenced the most by RSTAM. Combined with tibial error, internal/external rotation angle and distraction-compression were the knee kinematics parameters most affected by RSTAM during the gait cycle, with average rms values of 3.8° and 11.1 mm. This study highlighted higher RSTAM during the swing phase particularly in the thigh segment and suggests new features for RSTAM such as the particular shape of some RSTAM waveforms and the absence of RSTAM in certain kinematics during the gait phases. The comparison of coefficient of multiple correlations showed some similarities of RSTAM between subjects, while some correlations were found with gait speed and BMI. These new insights could potentially allow the development of new methods of compensation to avoid STA.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The main goal of this paper is to propose a convergent finite volume method for a reactionâeuro"diffusion system with cross-diffusion. First, we sketch an existence proof for a class of cross-diffusion systems. Then the standard two-point finite volume fluxes are used in combination with a nonlinear positivity-preserving approximation of the cross-diffusion coefficients. Existence and uniqueness of the approximate solution are addressed, and it is also shown that the scheme converges to the corresponding weak solution for the studied model. Furthermore, we provide a stability analysis to study pattern-formation phenomena, and we perform two-dimensional numerical examples which exhibit formation of nonuniform spatial patterns. From the simulations it is also found that experimental rates of convergence are slightly below second order. The convergence proof uses two ingredients of interest for various applications, namely the discrete Sobolev embedding inequalities with general boundary conditions and a space-time $L^1$ compactness argument that mimics the compactness lemma due to Kruzhkov. The proofs of these results are given in the Appendix.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND: The literature suggests that intraoperative fractures of the greater trochanter and the metaphysis are increased with uncemented stems and the direct anterior approach. This study aims to determine the incidence and assess the functional and radiological outcome after such fractures. METHODS: 484 consecutive total hip replacements (THR) (64 ± 12 years) were analyzed. We treated trochanteric fractures conservatively without any further denuding, and secured metaphyseal fissures with cerclages. Postoperative X-rays and at the latest follow-up were compared to assess secondary fracture displacement and stem subsidence. Western Ontario and McMaster Universities Arthritis Index (WOMAC) scores after 1 year were analyzed. For each patient sustaining a fracture, two patients without fractures were matched in terms of age, body mass index and gender. RESULTS: 13 (2.7 %, 5 male, 68 ± 9 years) patients with intraoperative fractures of the greater trochanter (n = 8) or the metaphysis (n = 5) were analyzed. Consolidation was observed in 7/8 patients sustaining a trochanteric fracture while secondary displacement of the fragment occurred in one case. Stem subsidence was observed in 2/5 cases (5 and 7 mm). Patients who sustained a fracture showed a trend towards poorer WOMAC scores at 1 year postoperatively, compared to patients without fractures. A significantly increased joint stiffness was also observed. CONCLUSION: The intraoperative fracture risk in this series of THR through a direct anterior approach was 2.7 %. Trochanteric fractures do heal without primary fixation. Metaphyseal fractures heal well if immediately stabilized with a cerclage.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Previous studies assessed the outcome of ankle arthrodesis (AA) and total ankle replacement (TAR) surgeries; however, the extent of postoperative recovery towards bilateral gait mechanics (BGM) is unknown. We evaluated the outcome of the two surgeries at least 2 years post rehabilitation, focusing on BGM. 36 participants, including 12 AA patients, 12 TAR patients, and 12 controls were included. Gait assessment over 50 m distance was performed utilizing pressure insoles and 3D inertial sensors, following which an intraindividual comparison was performed. Most spatiotemporal and kinematic parameters in the TAR group were indicative of good gait symmetry, while the AA group presented significant differences. Plantar pressure symmetry among the AA group was also significantly distorted. Abnormality in biomechanical behavior of the AA unoperated, contralateral foot was observed. In summary, our results indicate an altered BGM in AA patients, whereas a relatively fully recovered BGM is observed in TAR patients, despite the quantitative differences in several parameters when compared to a healthy population. Our study supports a biomechanical assessment and rehabilitation of both operated and unoperated sides after major surgeries for ankle osteoarthrosis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Complications related to the neck-stem junction of modular stems used for total hip arthroplasty (THA) are generating increasing concern. A 74-year-old male had increasing pain and a cutaneous reaction around the scar 1 year after THA with a modular neck-stem. Imaging revealed osteolysis of the calcar and a pseudo-tumour adjacent to the neck-stem junction. Serum cobalt levels were elevated. Revision surgery to exchange the stem and liner and to resect the pseudo-tumour was performed. Analysis of the stem by scanning electron microscopy and by energy dispersive X-ray and white light interferometry showed fretting corrosion at the neck-stem junction contrasting with minimal changes at the head-neck junction. Thus, despite dry assembly of the neck and stem on the back table at primary THA, full neck-stem contact was not achieved, and the resulting micromotion at the interface led to fretting corrosion. This case highlights the mechanism of fretting corrosion at the neck-stem interface responsible for adverse local tissue reactions. Clinical and radiological follow-up is mandatory in patients with dual-modular stems.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Depuis le séminaire H. Cartan de 1954-55, il est bien connu que l'on peut trouver des éléments de torsion arbitrairement grande dans l'homologie entière des espaces d'Eilenberg-MacLane K(G,n) où G est un groupe abélien non trivial et n>1. L'objectif majeur de ce travail est d'étendre ce résultat à des H-espaces possédant plus d'un groupe d'homotopie non trivial. Dans le but de contrôler précisément le résultat de H. Cartan, on commence par étudier la dualité entre l'homologie et la cohomologie des espaces d'Eilenberg-MacLane 2-locaux de type fini. On parvient ainsi à raffiner quelques résultats qui découlent des calculs de H. Cartan. Le résultat principal de ce travail peut être formulé comme suit. Soit X un H-espace ne possédant que deux groupes d'homotopie non triviaux, tous deux finis et de 2-torsion. Alors X n'admet pas d'exposant pour son groupe gradué d'homologie entière réduite. On construit une large classe d'espaces pour laquelle ce résultat n'est qu'une conséquence d'une caractéristique topologique, à savoir l'existence d'un rétract faible X K(G,n) pour un certain groupe abélien G et n>1. On généralise également notre résultat principal à des espaces plus compliqués en utilisant la suite spectrale d'Eilenberg-Moore ainsi que des méthodes analytiques faisant apparaître les nombres de Betti et leur comportement asymptotique. Finalement, on conjecture que les espaces qui ne possédent qu'un nombre fini de groupes d'homotopie non triviaux n'admettent pas d'exposant homologique. Ce travail contient par ailleurs la présentation de la « machine d'Eilenberg-MacLane », un programme C++ conçu pour calculer explicitement les groupes d'homologie entière des espaces d'Eilenberg-MacLane. <br/><br/>By the work of H. Cartan, it is well known that one can find elements of arbitrarilly high torsion in the integral (co)homology groups of an Eilenberg-MacLane space K(G,n), where G is a non-trivial abelian group and n>1. The main goal of this work is to extend this result to H-spaces having more than one non-trivial homotopy groups. In order to have an accurate hold on H. Cartan's result, we start by studying the duality between homology and cohomology of 2-local Eilenberg-MacLane spaces of finite type. This leads us to some improvements of H. Cartan's methods in this particular case. Our main result can be stated as follows. Let X be an H-space with two non-vanishing finite 2-torsion homotopy groups. Then X does not admit any exponent for its reduced integral graded (co)homology group. We construct a wide class of examples for which this result is a simple consequence of a topological feature, namely the existence of a weak retract X K(G,n) for some abelian group G and n>1. We also generalize our main result to more complicated stable two stage Postnikov systems, using the Eilenberg-Moore spectral sequence and analytic methods involving Betti numbers and their asymptotic behaviour. Finally, we investigate some guesses on the non-existence of homology exponents for finite Postnikov towers. We conjecture that Postnikov pieces do not admit any (co)homology exponent. This work also includes the presentation of the "Eilenberg-MacLane machine", a C++ program designed to compute explicitely all integral homology groups of Eilenberg-MacLane spaces. <br/><br/>Il est toujours difficile pour un mathématicien de parler de son travail. La difficulté réside dans le fait que les objets qu'il étudie sont abstraits. On rencontre assez rarement un espace vectoriel, une catégorie abélienne ou une transformée de Laplace au coin de la rue ! Cependant, même si les objets mathématiques sont difficiles à cerner pour un non-mathématicien, les méthodes pour les étudier sont essentiellement les mêmes que celles utilisées dans les autres disciplines scientifiques. On décortique les objets complexes en composantes plus simples à étudier. On dresse la liste des propriétés des objets mathématiques, puis on les classe en formant des familles d'objets partageant un caractère commun. On cherche des façons différentes, mais équivalentes, de formuler un problème. Etc. Mon travail concerne le domaine mathématique de la topologie algébrique. Le but ultime de cette discipline est de parvenir à classifier tous les espaces topologiques en faisant usage de l'algèbre. Cette activité est comparable à celle d'un ornithologue (topologue) qui étudierait les oiseaux (les espaces topologiques) par exemple à l'aide de jumelles (l'algèbre). S'il voit un oiseau de petite taille, arboricole, chanteur et bâtisseur de nids, pourvu de pattes à quatre doigts, dont trois en avant et un, muni d'une forte griffe, en arrière, alors il en déduira à coup sûr que c'est un passereau. Il lui restera encore à déterminer si c'est un moineau, un merle ou un rossignol. Considérons ci-dessous quelques exemples d'espaces topologiques: a) un cube creux, b) une sphère et c) un tore creux (c.-à-d. une chambre à air). a) b) c) Si toute personne normalement constituée perçoit ici trois figures différentes, le topologue, lui, n'en voit que deux ! De son point de vue, le cube et la sphère ne sont pas différents puisque ils sont homéomorphes: on peut transformer l'un en l'autre de façon continue (il suffirait de souffler dans le cube pour obtenir la sphère). Par contre, la sphère et le tore ne sont pas homéomorphes: triturez la sphère de toutes les façons (sans la déchirer), jamais vous n'obtiendrez le tore. Il existe un infinité d'espaces topologiques et, contrairement à ce que l'on serait naïvement tenté de croire, déterminer si deux d'entre eux sont homéomorphes est très difficile en général. Pour essayer de résoudre ce problème, les topologues ont eu l'idée de faire intervenir l'algèbre dans leurs raisonnements. Ce fut la naissance de la théorie de l'homotopie. Il s'agit, suivant une recette bien particulière, d'associer à tout espace topologique une infinité de ce que les algébristes appellent des groupes. Les groupes ainsi obtenus sont appelés groupes d'homotopie de l'espace topologique. Les mathématiciens ont commencé par montrer que deux espaces topologiques qui sont homéomorphes (par exemple le cube et la sphère) ont les même groupes d'homotopie. On parle alors d'invariants (les groupes d'homotopie sont bien invariants relativement à des espaces topologiques qui sont homéomorphes). Par conséquent, deux espaces topologiques qui n'ont pas les mêmes groupes d'homotopie ne peuvent en aucun cas être homéomorphes. C'est là un excellent moyen de classer les espaces topologiques (pensez à l'ornithologue qui observe les pattes des oiseaux pour déterminer s'il a affaire à un passereau ou non). Mon travail porte sur les espaces topologiques qui n'ont qu'un nombre fini de groupes d'homotopie non nuls. De tels espaces sont appelés des tours de Postnikov finies. On y étudie leurs groupes de cohomologie entière, une autre famille d'invariants, à l'instar des groupes d'homotopie. On mesure d'une certaine manière la taille d'un groupe de cohomologie à l'aide de la notion d'exposant; ainsi, un groupe de cohomologie possédant un exposant est relativement petit. L'un des résultats principaux de ce travail porte sur une étude de la taille des groupes de cohomologie des tours de Postnikov finies. Il s'agit du théorème suivant: un H-espace topologique 1-connexe 2-local et de type fini qui ne possède qu'un ou deux groupes d'homotopie non nuls n'a pas d'exposant pour son groupe gradué de cohomologie entière réduite. S'il fallait interpréter qualitativement ce résultat, on pourrait dire que plus un espace est petit du point de vue de la cohomologie (c.-à-d. s'il possède un exposant cohomologique), plus il est intéressant du point de vue de l'homotopie (c.-à-d. il aura plus de deux groupes d'homotopie non nuls). Il ressort de mon travail que de tels espaces sont très intéressants dans le sens où ils peuvent avoir une infinité de groupes d'homotopie non nuls. Jean-Pierre Serre, médaillé Fields en 1954, a montré que toutes les sphères de dimension >1 ont une infinité de groupes d'homotopie non nuls. Des espaces avec un exposant cohomologique aux sphères, il n'y a qu'un pas à franchir...

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Although fetal anatomy can be adequately viewed in new multi-slice MR images, many critical limitations remain for quantitative data analysis. To this end, several research groups have recently developed advanced image processing methods, often denoted by super-resolution (SR) techniques, to reconstruct from a set of clinical low-resolution (LR) images, a high-resolution (HR) motion-free volume. It is usually modeled as an inverse problem where the regularization term plays a central role in the reconstruction quality. Literature has been quite attracted by Total Variation energies because of their ability in edge preserving but only standard explicit steepest gradient techniques have been applied for optimization. In a preliminary work, it has been shown that novel fast convex optimization techniques could be successfully applied to design an efficient Total Variation optimization algorithm for the super-resolution problem. In this work, two major contributions are presented. Firstly, we will briefly review the Bayesian and Variational dual formulations of current state-of-the-art methods dedicated to fetal MRI reconstruction. Secondly, we present an extensive quantitative evaluation of our SR algorithm previously introduced on both simulated fetal and real clinical data (with both normal and pathological subjects). Specifically, we study the robustness of regularization terms in front of residual registration errors and we also present a novel strategy for automatically select the weight of the regularization as regards the data fidelity term. Our results show that our TV implementation is highly robust in front of motion artifacts and that it offers the best trade-off between speed and accuracy for fetal MRI recovery as in comparison with state-of-the art methods.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The costs related to the treatment of infected total joint arthroplasties represent an ever groving burden to the society. Different patient-adapted therapeutic options like débridement and retention, 1- or 2-step exchange can be used. If a 2-step exchange is used we have to consider short (2-4 weeks) or long (>4-6 weeks) interval treatment. The Swiss DRG (Diagnose related Groups) determines the reimboursement the hopsital receives for the treatment of an infected total arthroplasty. The review assesses the cost-effectiveness of hospitalisation practices linked to surgical treatment in the two-stage exchange of a prosthetic-joint infection. The aim of this retrospectiv study is to compare the economical impact between a short (2 to 4 weeks) versus a long (6 weeks and above) interval during a two-satge procedure to determine the financial impact. Retrospectiv study of the patients with a two-stage procedure for a hip or knee prosthetic joint infection at CHUV hospital Lausanne (Switzerland) between 2012 and 2013. The review analyses the correlation between the interval length and the length of the hospital stay as well as with the costs and revenues per hospital stay. In average there is a loss of 40′000 Euro per hospitalisation for the treatment of prosthetic joint infection. Revenues never cover all the costs, even with a short interval procedure. This economical loss increases with the length of the hospital stay if a long-term intervall is choosen. The review explores potential for improvement in reimbourement practices and hospitalisation practices in the current Swiss healthcare setting. There should be alternative setups to decrease the burden of medical costs by a) increase the reimboursment for the treatment of infected total joints or by b) splitting the hospital stay with partners (rapid transfer after first operation from center hospital to level 2 hospital and retransfer for second operation to center) in order to increase revenues.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fetal MRI reconstruction aims at finding a high-resolution image given a small set of low-resolution images. It is usually modeled as an inverse problem where the regularization term plays a central role in the reconstruction quality. Literature has considered several regularization terms s.a. Dirichlet/Laplacian energy [1], Total Variation (TV)based energies [2,3] and more recently non-local means [4]. Although TV energies are quite attractive because of their ability in edge preservation, standard explicit steepest gradient techniques have been applied to optimize fetal-based TV energies. The main contribution of this work lies in the introduction of a well-posed TV algorithm from the point of view of convex optimization. Specifically, our proposed TV optimization algorithm for fetal reconstruction is optimal w.r.t. the asymptotic and iterative convergence speeds O(1/n(2)) and O(1/root epsilon), while existing techniques are in O(1/n) and O(1/epsilon). We apply our algorithm to (1) clinical newborn data, considered as ground truth, and (2) clinical fetal acquisitions. Our algorithm compares favorably with the literature in terms of speed and accuracy.