227 resultados para Expression Vector System
Resumo:
Stimulation of resident cells by NF-κB activating cytokines is a central element of inflammatory and degenerative disorders of the central nervous system (CNS). This disease-mediated NF-κB activation could be used to drive transgene expression selectively in affected cells, using adeno-associated virus (AAV)-mediated gene transfer. We have constructed a series of AAV vectors expressing GFP under the control of different promoters including NF-κB -responsive elements. As an initial screen, the vectors were tested in vitro in HEK-293T cells treated with TNF-α. The best profile of GFP induction was obtained with a promoter containing two blocks of four NF-κB -responsive sequences from the human JCV neurotropic polyoma virus promoter, fused to a new tight minimal CMV promoter, optimally distant from each other. A therapeutical gene, glial cell line-derived neurotrophic factor (GDNF) cDNA under the control of serotype 1-encapsidated NF-κB -responsive AAV vector (AAV-NF) was protective in senescent cultures of mouse cortical neurons. AAV-NF was then evaluated in vivo in the kainic acid (KA)-induced status epilepticus rat model for temporal lobe epilepsy, a major neurological disorder with a central pathophysiological role for NF-κB activation. We demonstrate that AAV-NF, injected in the hippocampus, responded to disease induction by mediating GFP expression, preferentially in CA1 and CA3 neurons and astrocytes, specifically in regions where inflammatory markers were also induced. Altogether, these data demonstrate the feasibility to use disease-activated transcription factor-responsive elements in order to drive transgene expression specifically in affected cells in inflammatory CNS disorders using AAV-mediated gene transfer.
Resumo:
TLR4 (Toll-like receptor 4) is essential for sensing the endotoxin of Gram-negative bacteria. Mutations or deletion of the TLR4 gene in humans or mice have been associated with altered predisposition to or outcome of Gram-negative sepsis. In the present work, we studied the expression and regulation of the Tlr4 gene of mouse. In vivo, TLR4 levels were higher in macrophages compared with B, T or natural killer cells. High basal TLR4 promoter activity was observed in RAW 264.7, J774 and P388D1 macrophages transfected with a TLR4 promoter reporter vector. Analysis of truncated and mutated promoter constructs identified several positive [two Ets (E twenty-six) and one AP-1 (activator protein-1) sites] and negative (a GATA-like site and an octamer site) regulatory elements within 350 bp upstream of the transcriptional start site. The myeloid and B-cell-specific transcription factor PU.1 bound to the proximal Ets site. In contrast, none among PU.1, Ets-1, Ets-2 and Elk-1, but possibly one member of the ESE (epithelium-specific Ets) subfamily of Ets transcription factors, bound to the distal Ets site, which was indispensable for Tlr4 gene transcription. Endotoxin did not affect macrophage TLR4 promoter activity, but it decreased TLR4 steady-state mRNA levels by increasing the turnover of TLR4 transcripts. TLR4 expression was modestly altered by other pro- and anti-inflammatory stimuli, except for PMA plus ionomycin which strongly increased promoter activity and TLR4 mRNA levels. The mouse and human TLR4 genes were highly conserved. Yet, notable differences exist with respect to the elements implicated in gene regulation, which may account for species differences in terms of tissue expression and modulation by microbial and inflammatory stimuli.
Resumo:
Gene transfer that relies on integrating vectors often suffers from epigenetic or regulatory effects that influence the expression of the therapeutic gene and=or of cellular genes located near the vector integration site in the chromosome. Insulator elements act to block gene activation by enhancers, while chromatin domain boundary or barrier sequences prevent gene-silencing effects. At present, the modes of action of insulator and barriers are poorly understood, and their use in the context of gene therapies remains to be documented. Using combinations of reporter genes coding for indicator fluorescent proteins, we constructed assay systems that allow the quantification of the insulator or of the barrier activities of genetic elements in individual cells. This presentation will illustrate how these assay systems were used to identify short DNA elements that can insulate nearby genes from activation by viral vector enhancer elements, and=or that can block the propagation of a silent chromatin structure that leads to gene silencing. We will show that small elements of the order of 100-400 nucleotides can be designed to achieve both insulator and boundary function, as needed for safer integrating viral vectors.
Resumo:
Cone photoreceptors mediate visual acuity under daylight conditions, so loss of cone-mediated central vision of course dramatically affects the quality of life of patients suffering from retinal degeneration. Therefore, promoting cone survival has become the goal of many ocular therapies and defining the stage of degeneration that still allows cell rescue is of prime importance. Using the Rpe65(R91W/R91W) mouse, which carries a mutation in the Rpe65 gene leading to progressive photoreceptor degeneration in both patients and mice, we defined stages of retinal degeneration that still allow cone rescue. We evaluated the therapeutic window within which cones can be rescued, using a subretinal injection of a lentiviral vector driving expression of RPE65 in the Rpe65(R91W/R91W) mice. Surprisingly, when applied to adult mice (1 month) this treatment not only stalls or slows cone degeneration but, actually, induces cone-specific protein expression that was previously absent. Before the intervention only part of the cones (40% of the number found in wild-type animals) in the Rpe65(R91W/R91W) mice expressed cone transducin (GNAT2); this fraction increased to 64% after treatment. Correct S-opsin localization is also recovered in the transduced region. In consequence these results represent an extended therapeutic window compared to the Rpe65(-/-) mice, implying that patients suffering from missense mutations might also benefit from a prolonged therapeutic window. Moreover, cones are not only rescued during the course of the degeneration, but can actually recover their initial status, meaning that a proportion of altered cones in chromophore deficiency-related disease can be rehabilitated even though they are severely affected.
Resumo:
Matrix attachment regions (MARs) are DNA sequences that may be involved in anchoring DNA/chromatin to the nuclear matrix and they have been described in both mammalian and plant species. MARs possess a number of features that facilitate the opening and maintenance of euchromatin. When incorporated into viral or non-viral vectors MARs can increase transgene expression and limit position-effects. They have been used extensively to improve transgene expression and recombinant protein production and promising studies on the potential use of MAR elements for mammalian gene therapy have appeared. These illustrate how MARs may be used to mediate sustained or higher levels of expression of therapeutic genes and/or to reduce the viral vector multiplicity of infection required to achieve consistent expression. More recently, the discovery of potent MAR elements and the development of improved vectors for transgene delivery, notably non-viral episomal vectors, has strengthened interest in their use to mediate expression of therapeutic transgenes. This article will describe the progress made in this field, and it will discuss future directions and issues to be addressed.
Resumo:
Hepatitis C virus (HCV) infection induces the endogenous interferon (IFN) system in the liver in some but not all patients with chronic hepatitis C (CHC). Patients with a pre-activated IFN system are less likely to respond to the current standard therapy with pegylated IFN-alpha. Mitochondrial antiviral signaling protein (MAVS) is an important adaptor molecule in a signal transduction pathway that senses viral infections and transcriptionally activates IFN-beta. The HCV NS3-4A protease can cleave and thereby inactivate MAVS in vitro, and, therefore, might be crucial in determining the activation status of the IFN system in the liver of infected patients. We analyzed liver biopsies from 129 patients with CHC to investigate whether MAVS is cleaved in vivo and whether cleavage prevents the induction of the endogenous IFN system. Cleavage of MAVS was detected in 62 of the 129 samples (48%) and was more extensive in patients with a high HCV viral load. MAVS was cleaved by all HCV genotypes (GTs), but more efficiently by GTs 2 and 3 than by GTs 1 and 4. The IFN-induced Janus kinase (Jak)-signal transducer and activator of transcription protein (STAT) pathway was less frequently activated in patients with cleaved MAVS, and there was a significant inverse correlation between cleavage of MAVS and the expression level of the IFN-stimulated genes IFI44L, Viperin, IFI27, USP18, and STAT1. We conclude that the pre-activation status of the endogenous IFN system in the liver of patients with CHC is in part regulated by cleavage of MAVS.
Resumo:
In the plant-beneficial, root-colonizing strain Pseudomonas fluorescens CHA0, the Gac/Rsm signal transduction pathway positively regulates the synthesis of biocontrol factors (mostly antifungal secondary metabolites) and contributes to oxidative stress response via the stress sigma factor RpoS. The backbone of this pathway consists of the GacS/GacA two-component system, which activates the expression of three small regulatory RNAs (RsmX, RsmY, RsmZ) and thereby counters translational repression exerted by the RsmA and RsmE proteins on target mRNAs encoding biocontrol factors. We found that the expression of typical biocontrol factors, that is, antibiotic compounds and hydrogen cyanide (involving the phlA and hcnA genes), was significantly lower at 35 degrees C than at 30 degrees C. The expression of the rpoS gene was affected in parallel. This temperature control depended on RetS, a sensor kinase acting as an antagonist of the GacS/GacA system. An additional sensor kinase, LadS, which activated the GacS/GacA system, apparently did not contribute to thermosensitivity. Mutations in gacS or gacA were epistatic to (that is, they overruled) mutations in retS or ladS for expression of the small RNAs RsmXYZ. These data are consistent with a model according to which RetS-GacS and LadS-GacS interactions shape the output of the Gac/Rsm pathway and the environmental temperature influences the RetS-GacS interaction in P. fluorescens CHA0.
Resumo:
The monocarboxylate transporter MCT4 is a proton-linked carrier particularly important for lactate release from highly glycolytic cells. In the central nervous system, MCT4 is exclusively expressed by astrocytes. Surprisingly, MCT4 expression in primary cultures of mouse cortical astrocytes is conspicuously low, suggesting that an external, nonastrocytic signal is necessary to obtain the observed pattern of expression in vivo. Here, we demonstrate that nitric oxide (NO), delivered by various NO donors, time- and dose-dependently induces MCT4 expression in cultured cortical astrocytes both at the mRNA and protein levels. In contrast, NO does not enhance the expression of MCT1, the other astrocytic monocarboxylate transporter. The transcriptional effect of NO is not mediated by a cGMP-dependent mechanism as shown by the absence of effect of a cGMP analog or of a selective guanylate cyclase inhibitor. NO causes an increase in astrocytic lactate transport capacity which requires the enhancement of MCT4 expression as both are prevented by the use of a specific siRNA against MCT4. In addition, cumulated lactate release by astrocytes over a period of 24 h was also enhanced by NO treatment. Our data suggest that NO represents a putative intercellular signal to control MCT4 expression in astrocytes and in doing so, to facilitate lactate transfer to other surrounding cell types in the central nervous system. (C) 2011 Wiley-Liss, Inc.
Resumo:
Purpose: Many retinal degenerations result from defective retina-specific gene expressions. Thus, it is important to understand how the expression of a photoreceptor-specific gene is regulated in vivo in order to achieve successful gene therapy. The present study aims to design an AAV2/8 vector that can regulate the transcript level in a physiological manner to replace missing PDE6b in Rd1 and Rd10 mice. In previous studies (Ogieta, et al., 2000), the short 5' flanking sequence of the human PDE6b gene (350 bp) was shown to be photoreceptor-specific in transgenic mice. However, the efficiency and specificity of the 5' flanking region of the human PDE6b was not investigated in the context of gene therapy during retinal degeneration. In this study, two different sequences of the 5' flanking region of the human PDE6b gene were studied as promoter elements and their expression will be tested in wild type and diseased retinas (Rd 10 mice).Methods: Two 5' flanking fragments of the human PDE6b gene: (-93 to +53 (150 bp) and -297 to +53 (350 bp)) were cloned in different plasmids in order to check their expression in vitro and in vivo by constructing an AAV2/8 vector. These elements drove the activity of either luciferase (pGL3 plasmids) or EGFP. jetPEI transfection in Y 79 cells was used to evaluate gene expression through luciferase activity. Constructs encoding EGFP under the control of the two promoters were performed in AAV2.1-93 (or 297)-EGFP plasmids to produce AAV2/8 vectors.Results: When pGL3-93 (150 bp) or pGL3-297 (350 bp) were transfected in the Y-79 cells, the smaller fragment (150 bp) showed higher gene expression compared to the 350 bp element and to the SV40 control, as previously reported. The 350 bp drove similar levels of expression when compared to the SV40 promoter. In view of these results, the fragments (150 bp or 350 bp) were integrated into the AAV2.1-EGFP plasmid to produce AAV2/8 vector, and we are currently evaluating the efficiency and specificity of the produced constructs in vivo in normal and diseased retinas.Conclusions: Comparisons of these vectors with vectors bearing ubiquitous promoters should reveal which construct is the most suitable to drive efficient and specific gene expression in diseased retinas in order to restore a normal function on the long term.
Resumo:
Colour polymorphism is common in wild population. One of the main questioning of evolutionary biologists is to understand how different colour variants could have evolved and be maintained in fluctuating environments, a selective process that forces individuals to constantly adapt their strategies in order to survive. This issue is particularly true for traits that are genetically inherited. Natural selection erodes genotypes with lowest fitness (less adapted), reducing in turn global genetic variation within population. In this context, the study of the evolution and maintenance of melanin- based coloration is relevant since inter-individual variation in the deposition of these pigments is common in animal and plant kingdoms and is under strong genetic control. In this thesis, I focus on the specific case of the tawny owl (Strix aluco), a species displaying continuous variation in reddish pheomelanin-based coloration. Interestingly, empirical studies highlighted covariations between melanin-based coloration and important behavioural, physiological and life history traits. Recently, a genetic model pointed out the melanocortin system and their pleiotropic effects as a potential regulator of these covariations. Accordingly, this PhD thesis further investigates colour-specific behavioural, physiological, or life history strategies, while examining the proximate mechanisms underlying these reaction norms. We found that differently coloured tawny owls differently resolve fundamental trade-off between offspring number and quality (Chapter 1), light melanic individuals producing many low- quality offspring and dark, melanic ones producing few high-quality offspring. These reproductive strategies are likely to induce alternative physiological constraints. Indeed, we demonstrated that light melanic individuals produced higher levels of reactive oxygen species (ROS, Chapter 2), but also expressed higher levels of antioxidant (GSH, Chapters 2 & 3). Interestingly, we showed that light melanic breeding females could modulate their POMC prohormone levels according to the environmental conditions, while dark reddish ones produced constant levels of this prohormone {Chapter 4). Finally, we highlighted colour-specific patterns of prohormone convertase 1 (PCI) gene expression (Chapter 5), an enzyme responsible for POMC prohormone processing to ACTH and a- MSH, for instance. Altogether, these results provide strong evidence of colour-specific strategies, light and melanic tawny owls better coping with stressful and relaxed environments, respectively. Variation in melanin-based coloration is likely to be maintained by the heterogeneity of our study area and strong environmental stochasticity within and between years, these process favouring differently coloured tawny owls at different periods of time. From a proximate point of view, this PhD thesis supports the hypothesis that covariations between phenotypic traits and melanin-based coloration stems from the melanocortin system, especially the fundamental role of POMC gene expression and its processing to melanocortin peptides. - Le polymorphisme de couleur est une variation phénotypique très fréquente dans la nature. En biologie évolutive, une des problématiques clés est donc de comprendre comment différent morphes de couleur peuvent être apparus et maintenus au cours du temps dans des environnements aussi variables que les nôtres, surtout que ces fluctuations forcent ces morphes à s'adapter constamment pour assurer leur survie. Cette thématique est particulièrement réelle lorsque les variations phénotypiques sont héréditaires et donc sous forte influence génétique. La sélection naturelle a en effet le pouvoir d'éroder rapidement la variation génétique en éliminant les génotypes mal adaptés. Dans ce sens, l'étude de l'évolution, et de la maintenance de la coloration mélanique est donc tout à fait pertinente car la variation de coloration entre individus est très répandue à travers les règnes animal et végétal et sous forte influence génétique. Dans cette thèse, je me suis concentré sur le cas spécifique de la chouette hulotte (Strix aluco), une espèce présentant une variation continue dans la déposition de pigments pheomélaniques roux. De précédentes études ont déjà montré que cette variation de coloration était associée avec des variations de traits comportementaux, physiologiques ou d'histoire de vie. Récemment, une étude a souligné l'importance du système des mélanocortines et de leurs effets pléiotropes dans la régulation de ces covariations. En conséquence, cette thèse de doctoral a pour but d'étudier un peu plus les stratégies comportementales, physiologiques ou d'histoire de vie spécifiques à chaque morphe de couleur, tout en examinant un peu plus les mécanismes proximaux potentiellement à la base de ces normes de réactions. Nous constatons tout d'abord que les morphes de couleurs étaient associés à différentes stratégies dans la résolution de compromis telle que la production de beaucoup de jeunes ou des jeunes de qualité (Chapitre 1). Les morphes gris (dit peu mélaniques) ont tendance à produire beaucoup de jeunes mains de moindre qualité, alors que les morphes roux (dit fortement mélaniques) produisent moins de jeunes mais de meilleure qualité. Ces stratégies sont susceptibles alors d'induire certaines contraintes physiologiques. Par exemple, nous montrons que les morphes gris produisent plus de dérivés réactifs de l'oxygène (ROS, Chapitre 2), mais aussi plus d'antioxydants (GSH, Chapitres 2 & 3). Nous montrons ensuite que les femelles grises ont une plus grande capacité à moduler leur niveau de POMC prohormone dans le sang en fonction des conditions environnementales, alors que les femelles rousses gardent un niveau constant (Chapitre 4). Finalement, nous démontrons que les patterns d'expression du gène codant pour la prohormone convertase 1 varient chez des jeunes issus de parents gris ou roux (Chapitre 5). Ceci est particulièrement intéressant car cette enzyme permet de scinder la POMC prohormone en plusieurs peptides importants tels que l'ACTH ou l'a-MSH. En conclusion, ces résultats démontrent qu'il y a bel et bien des stratégies évolutives différentes entre les morphes de couleurs, les chouettes hulottes grises et rousses étant respectivement plus adaptés à des environnements stressants ou favorables. L'hétérogénéité de notre zone d'étude et la stochasticité environnementale qui caractérise ses habitats pourraient donc agir comme une source de sélection temporelle, laquelle favoriserait les différents morphes de couleurs à diverses périodes. D'un point de vue plus proximale maintenant, cette thèse de doctorat soutient l'hypothèse que les covariations observées entre la coloration mélanique et des traits phénotypiques importants sont modulées par les effets pléiotropes du système des mélanocortines, et met en avant le rôle prépondérant que pourrait jouer l'expression du gène POMC et sa post traduction en mélanocortines.
Resumo:
PURPOSE: Although the central role of the immune system for tumor prognosis is generally accepted, a single robust marker is not yet available. EXPERIMENTAL DESIGN: On the basis of receiver operating characteristic analyses, robust markers were identified from a 60-gene B cell-derived metagene and analyzed in gene expression profiles of 1,810 breast cancer; 1,056 non-small cell lung carcinoma (NSCLC); 513 colorectal; and 426 ovarian cancer patients. Protein and RNA levels were examined in paraffin-embedded tissue of 330 breast cancer patients. The cell types were identified with immunohistochemical costaining and confocal fluorescence microscopy. RESULTS: We identified immunoglobulin κ C (IGKC) which as a single marker is similarly predictive and prognostic as the entire B-cell metagene. IGKC was consistently associated with metastasis-free survival across different molecular subtypes in node-negative breast cancer (n = 965) and predicted response to anthracycline-based neoadjuvant chemotherapy (n = 845; P < 0.001). In addition, IGKC gene expression was prognostic in NSCLC and colorectal cancer. No association was observed in ovarian cancer. IGKC protein expression was significantly associated with survival in paraffin-embedded tissues of 330 breast cancer patients. Tumor-infiltrating plasma cells were identified as the source of IGKC expression. CONCLUSION: Our findings provide IGKC as a novel diagnostic marker for risk stratification in human cancer and support concepts to exploit the humoral immune response for anticancer therapy. It could be validated in several independent cohorts and carried out similarly well in RNA from fresh frozen as well as from paraffin tissue and on protein level by immunostaining.
Resumo:
Medulloblastomas (MB) are the most common malignant brain tumors in childhood. Alkylator-based drugs are effective agents in the treatment of patients with MB. In several tumors, including malignant glioma, elevated O(6)-methylguanine-DNA methyltransferase (MGMT) expression levels or lack of MGMT promoter methylation have been found to be associated with resistance to alkylating chemotherapeutic agents such as temozolomide (TMZ). In this study, we examined the MGMT status of MB and central nervous system primitive neuroectodermal tumor (PNET) cells and two large sets of primary MB. In seven MB/PNET cell lines investigated, MGMT promoter methylation was detected only in D425 human MB cells as assayed by the qualitative methylation-specific PCR and the more quantitative pyrosequencing assay. In D425 human MB cells, MGMT mRNA and protein expression was clearly lower when compared with the MGMT expression in the other MB/PNET cell lines. In MB/PNET cells, sensitivity towards TMZ and 1-(2-chloroethyl)-3-cyclohexyl-1-nitrosourea (CCNU) correlated with MGMT methylation and MGMT mRNA expression. Pyrosequencing in 67 primary MB samples revealed a mean percentage of MGMT methylation of 3.7-92% (mean: 13.25%, median: 10.67%). Percentage of MGMT methylation and MGMT mRNA expression as determined by quantitative RT-PCR correlated inversely (n = 46; Pearson correlation r (2) = 0.14, P = 0.01). We then analyzed MGMT mRNA expression in a second set of 47 formalin-fixed paraffin-embedded primary MB samples from clinically well-documented patients treated within the prospective randomized multicenter trial HIT'91. No association was found between MGMT mRNA expression and progression-free or overall survival. Therefore, it is not currently recommended to use MGMT mRNA expression analysis to determine who should receive alkylating agents and who should not.
Resumo:
Embryonic stem (ES) cell-derived cardiomyocytes recapitulate cardiomyogenesis in vitro and are a potential source of cells for cardiac repair. However, this requires enrichment of mixed populations of differentiating ES cells into cardiomyocytes. Toward this goal, we have generated bicistronic vectors that express both the blasticidin S deaminase (bsd) gene and a fusion protein consisting of either myosin light chain (MLC)-3f or human alpha-actinin 2A and enhanced green fluorescent protein (EGFP) under the transcriptional control of the alpha-cardiac myosin heavy chain (alpha-MHC) promoter. Insertion of the DNase I-hypersensitive site (HS)-2 element from the beta-globin locus control region, which has been shown to reduce transgene silencing in other cell systems, upstream of the transgene promoter enhanced MLC3f-EGFP gene expression levels in mouse ES cell lines. The alpha-MHC-alpha-actinin-EGFP, but not the alpha-MHC-MLC3f-EGFP, construct resulted in the correct incorporation of the newly synthesized fusion protein at the Z-band of the sarcomeres in ES cell-derived cardiomyocytes. Exposure of embryoid bodies to blasticidin S selected for a relatively pure population of cardiomyocytes within 3 days. Myofibrillogenesis could be monitored by fluorescence microscopy in living cells due to sarcomeric epitope tagging. Therefore, this genetic system permits the rapid selection of a relatively pure population of developing cardiomyocytes from a heterogeneous population of differentiating ES cells, simultaneously allowing monitoring of early myofibrillogenesis in the selected myocytes
Resumo:
Pseudomonas fluorescens CHA0, an antagonist of phytopathogenic fungi in the rhizosphere of crop plants, elaborates and excretes several secondary metabolites with antibiotic properties. Their synthesis depends on three small RNAs (RsmX, RsmY, and RsmZ), whose expression is positively controlled by the GacS-GacA two-component system at high cell population densities. To find regulatory links between primary and secondary metabolism in P. fluorescens and in the related species Pseudomonas aeruginosa, we searched for null mutations that affected central carbon metabolism as well as the expression of rsmY-gfp and rsmZ-gfp reporter constructs but without slowing down the growth rate in rich media. Mutation in the pycAB genes (for pyruvate carboxylase) led to down-regulation of rsmXYZ and secondary metabolism, whereas mutation in fumA (for a fumarase isoenzyme) resulted in up-regulation of the three small RNAs and secondary metabolism in the absence of detectable nutrient limitation. These effects required the GacS sensor kinase but not the accessory sensors RetS and LadS. An analysis of intracellular metabolites in P. fluorescens revealed a strong positive correlation between small RNA expression and the pools of 2-oxoglutarate, succinate, and fumarate. We conclude that Krebs cycle intermediates (already known to control GacA-dependent virulence factors in P. aeruginosa) exert a critical trigger function in secondary metabolism via the expression of GacA-dependent small RNAs.
Resumo:
The melanocortin system is implicated in the expression of many phenotypic traits. Activation of the melanocortin MC(1) receptor by melanocortin hormones induces the production of brown/black eumelanic pigments, while activation of the four other melanocortin receptors affects other physiological and behavioural functions including stress response, energy homeostasis, anti-inflammatory and sexual activity, aggressiveness and resistance to oxidative stress. We recently proposed the hypothesis that some melanocortin-physiological and -behavioural traits are correlated within individuals. This hypothesis predicts that the degree of eumelanin production may, in some cases, be associated with the regulation of glucocorticoids, immunity, resistance to oxidative stress, energy homeostasis, sexual activity, and aggressiveness. A review of the zoological literature and detailed experimental studies in a free-living population of barn owls (Tyto alba) showed that indeed melanic coloration is often correlated with the predicted physiological and behavioural traits. Support for predictions of the hypothesis that covariations between coloration and other phenotypic traits stem from pleiotropic effects of the melanocortin system raises a number of theoretical and empirical issues from evolutionary and pharmacological point of views.