222 resultados para ENERGY EXPENDITURE
Resumo:
Aims/hypothesis We assessed systemic and local muscle fuel metabolism during aerobic exercise in patients with type I diabetes at euglycaemia and hyperglycaemia with identical insulin levels.Methods This was a single-blinded randomised crossover study at a university diabetes unit in Switzerland. We studied seven physically active men with type I diabetes (mean +/- SEM age 33.5 +/- 2.4 years, diabetes duration 20.1 +/- 3.6 years, HbA(1c) 6.7 +/- 0.2% and peak oxygen uptake [VO2peak] 50.3 +/- 4.5 ml min(-1) kg(-1)). Men were studied twice while cycling for 120 min at 55 to 60% of VO2peak, with a blood glucose level randomly set either at 5 or 11 mmol/l and identical insulinaemia. The participants were blinded to the glycaemic level; allocation concealment was by opaque, sealed envelopes. Magnetic resonance spectroscopy was used to quantify intramyocellular glycogen and lipids before and after exercise. Indirect calorimetry and measurement of stable isotopes and counter-regulatory hormones complemented the assessment of local and systemic fuel metabolism.Results The contribution of lipid oxidation to overall energy metabolism was higher in euglycaemia than in hyperglycaemia (49.4 +/- 4.8 vs 30.6 +/- 4.2%; p<0.05). Carbohydrate oxidation accounted for 48.2 +/- 4.7 and 66.6 +/- 4.2% of total energy expenditure in euglycaemia and hyperglycaemia, respectively (p<0.05). The level of intramyocellular glycogen before exercise was higher in hyperglycaemia than in euglycaemia (3.4 +/- 0.3 vs 2.7 +/- 0.2 arbitrary units [AU]; p<0.05). Absolute glycogen consumption tended to be higher in hyperglycaemia than in euglycaemia (1.3 +/- 0.3 vs 0.9 +/- 0.1 AU). Cortisol and growth hormone increased more strongly in euglycaemia than in hyperglycaemia (levels at the end of exercise 634 52 vs 501 +/- 32 nmol/l and 15.5 +/- 4.5 vs 7.4 +/- 2.0 ng/ml, respectively; p<0.05).Conclusions/interpretation Substrate oxidation in type I diabetic patients performing aerobic exercise in euglycaemia is similar to that in healthy individuals revealing a shift towards lipid oxidation during exercise. In hyperglycaemia fuel metabolism in these patients is dominated by carbohydrate oxidation. Intramyocellular glycogen was not spared in hyperglycaemia.
Resumo:
Endogenous glucose production rate (EGPR) remains constant when lactate is infused in healthy humans. A decrease of glycogenolysis or of gluconeogenesis from endogenous precursors or a stimulation of glycogen synthesis, may all be involved; This autoregulation does not depend on changes in glucoregulatory hormones. It may be speculated that alterations in basal sympathetic tone may be involved. To gain insights into the mechanisms responsible for autoregulation of EGPR, glycogenolysis and gluconeogenesis were measured, with a novel method (based on the prelabelling of endogenous glycogen with 13C glucose, and determination of hepatic 13C glycogen enrichment from breath 13CO2 and respiratory gas exchanges) in healthy humans infused with lactate or saline. These measurements were performed with or without beta-adrenergic receptor blockade (propranolol). Infusion of lactate increased energy expenditure, but did not increase EGPR; the relative contributions of gluconeogenesis and glycogenolysis to EGPR were also unaltered. This indicates that autoregulation is attained, at least in part, by inhibition of gluconeogenesis from endogenous precursors. beta-adrenergic receptor blockade alone (with propranolol) did not alter EGPR, glycogenolysis or gluconeogenesis. During infusion of lactate, propranolol decreased the thermic effect of lactate but EGPR remained constant. This indicates that alterations of beta-adrenergic activity is not required for autoregulation of EGPR.
Resumo:
OBJECTIVE: To assess the thermogenic response of dopamine at three different infusion rates and to analyze its effects on various biochemical variables. DESIGN: Randomized sequential experimental treatment bracketed by control periods. PATIENTS: Eight young healthy male volunteers with normal body weight (51 to 89 kg). INTERVENTIONS: Three experimental periods during which dopamine was administered iv in a randomized order at rates of 2.5, 5, or 10 micrograms/kg.min with one preinfusion baseline and two recovery periods in between. MEASUREMENTS AND MAIN RESULTS: A significant (p less than .01) increase in resting energy expenditure was observed in response to the two highest dopamine infusion rates (5 and 10 micrograms/kg.min), corresponding to 6% and 15% median increases, respectively, as compared with preinfusion values. At the lowest dopamine infusion rate, no variation in resting energy expenditure was observed. Dopamine induced a significant (p less than .01) increase in hyperglycemia at all three infusion rates, and, at the highest infusion rate, dopamine induced a significant (p less than .05) increase of plasma free fatty acid concentrations. Insulin plasma concentrations were significantly (p less than .05 to p less than 0.1) increased at the three dopamine infusion rates. CONCLUSIONS: Dopamine infusion produces a dose-dependent thermogenic effect and induces various metabolic actions in man.
Resumo:
The net mechanical efficiency of positive work (eta(pos)) has been shown to increase if it is immediately preceded by negative work. This phenomenon is explained by the storage of elastic energy during the negative phase and its release during the subsequent positive phase. If a transition time (T) takes place, the elastic energy is dissipated into heat. The aim of the present study was to investigate the relationship between eta(pos) and T, and to determine the minimal T required so that eta(pos) reached its minimal value. Seven healthy male subjects were tested during four series of lowering-raising of the body mass. In the first series (S (0)), the negative and positive phases were executed without any transition time. In the three other series, T was varied by a timer (0.12, 0.24 and 0.56 s for series S (1), S (2) and S (3), respectively). These exercises were performed on a force platform sensitive to vertical forces to measure the mechanical work and a gas analyser was used to determine the energy expenditure. The results indicated that eta(pos) was the highest (31.1%) for the series without any transition time (S (0)). The efficiencies observed with transition times (S (1), S (2) and S (3)) were 27.7, 26.0 and 23.8%, respectively, demonstrating that T plays an important role for mechanical efficiency. The investigation of the relationship between eta(pos) and T revealed that the minimal T required so that eta(pos) reached its minimal value is 0.59 s.
Resumo:
Recent studies demonstrated a role for hypothalamic insulin and leptin action in the regulation of glucose homeostasis. This regulation involves proopiomelanocortin (POMC) neurons because suppression of phosphatidyl inositol 3-kinase (PI3K) signaling in these neurons blunts the acute effects of insulin and leptin on POMC neuronal activity. In the current study, we investigated whether disruption of PI3K signaling in POMC neurons alters normal glucose homeostasis using mouse models designed to both increase and decrease PI3K-mediated signaling in these neurons. We found that deleting p85alpha alone induced resistance to diet-induced obesity. In contrast, deletion of the p110alpha catalytic subunit of PI3K led to increased weight gain and adipose tissue along with reduced energy expenditure. Independent of these effects, increased PI3K activity in POMC neurons improved insulin sensitivity, whereas decreased PI3K signaling resulted in impaired glucose regulation. These studies show that activity of the PI3K pathway in POMC neurons is involved in not only normal energy regulation but also glucose homeostasis.
Resumo:
Many interventions promoting physical activity (PA) are effective in preventing disease onset, and although studies have found a positive relationship between health-related quality of life (HRQL) and PA, most of these studies have focused on older adults and those with chronic conditions. Less is known regarding the association between PA level and HRQL among healthy adults. Our objective was to analyse the relationship between PA level and HRQL among a sample of 573 employees aged 20-68 taking part in a workplace intervention to promote PA. Measures included HRQL (using a single item) and PA (i.e. Godin Leisure-Time Questionnaire). The Modified Canadian Aerobic Fitness Test (MCAFT) was also completed by 10% of the employees. MET-minute scores (assessing energy expenditure over one week) were compared across HRQL categories using ANOVA. A multiple linear regression analysis was conducted to further examine the relationship between HRQL and PA, controlling for potential covariates. Participants in the higher health status categories were found to report higher levels of energy expenditure (one-way ANOVA, p < 0.001). In the multiple linear regression model, each unit increase in health status level translated in a mean increase of 356 MET-minutes in energy expenditure (p < 0.001). This single-item assessment of health status explained six percent of the variance in energy expenditure. The study concludes that higher energy expenditure through PA among an adult workplace population is positively associated with increased health status, and it also suggests that a single-item HRQL measure is suitable for community- and population-based studies, reducing response burden and research costs.
Resumo:
The control of body weight and of blood glucose concentrations depends on the exquisite coordination of the function of several organs and tissues, in particular the liver, muscle and fat. These organs and tissues have major roles in the use and storage of nutrients in the form of glycogen or triglycerides and in the release of glucose or free fatty acids into the blood, in periods of metabolic needs. These mechanisms are tightly regulated by hormonal and nervous signals, which are generated by specialized cells that detect variations in blood glucose or lipid concentrations. The hormones insulin and glucagon not only regulate glycemic levels through their action on these organs and the sympathetic and parasympathetic branches of the autonomic nervous system, which are activated by glucose or lipid sensors, but also modulate pancreatic hormone secretion and liver, muscle and fat glucose and lipid metabolism. Other signaling molecules, such as the adipocyte hormones leptin and adiponectin, have circulating plasma concentrations that reflect the level of fat stored in adipocytes. These signals are integrated at the level of the hypothalamus by the melanocortin pathway, which produces orexigenic and anorexigenic neuropeptides to control feeding behavior, energy expenditure and glucose homeostasis. Work from several laboratories, including ours, has explored the physiological role of glucose as a signal that regulates these homeostatic processes and has tested the hypothesis that the mechanism of glucose sensing that controls insulin secretion by the pancreatic beta-cells is also used by other cell types. I discuss here evidence for these mechanisms, how they integrate signals from other nutrients such as lipids and how their deregulation may initiate metabolic diseases.
Resumo:
Macrophage migration inhibitory factor (MIF) is a proinflammatory cytokine produced by many cells and tissues including pancreatic beta-cells, liver, skeletal muscle, and adipocytes. This study investigates the potential role of MIF in carbohydrate homeostasis in a physiological setting outside of severe inflammation, utilizing Mif knockout (MIF-/-) mice. Compared with wild-type (WT) mice, MIF-/- mice had a lower body weight, from birth until 4 months of age, but subsequently gained weight faster, resulting in a higher body weight at 12 months of age. The lower weight in young mice was related to a higher energy expenditure, and the higher weight in older mice was related to an increased food intake and a higher fat mass. Fasting blood insulin level was higher in MIF-/- mice compared with WT mice at any age. After i.p. glucose injection, the elevation of blood insulin level was higher in MIF-/- mice compared with WT mice, at 2 months of age, but was lower in 12-month-old MIF-/- mice. As a result, the glucose clearance during intraperitoneal glucose tolerance tests was higher in MIF-/- mice compared with WT mice until 4 months of age, and was lower in 12-month-old MIF-/- mice. Insulin resistance was estimated (euglycemic-hyperinsulinemic clamp tests), and the phosphorylation activity of AKT was similar in MIF-/- mice and WT mice. In conclusion, this mouse model provides evidence for the role of MIF in the control of glucose homeostasis.
Resumo:
OBJECTIVE: To study the relationship between the energy expenditure for activity (EEAct), the level of activity and adiposity in a group of 9-year-old boys (n = 28) with different body composition (body weight, 38 +/- 10 kg [range, 23 to 66 kg]; fat mass, 23% +/- 10% [range, 8% to 42%]). METHODS: Total energy expenditure (TEE) was measured by means of the heart-rate monitoring method. EEAct was calculated as TEE-(REE+0.1 TEE), where REE is the postabsorptive resting energy expenditure and 0.1 TEE corresponds to the postprandial thermogenesis (approximately 10% of TEE). RESULTS: TEE, REE, and EEAct were 9388 +/- 1859, 5154 +/- 642, and 3295 +/- 1356 l J/day, respectively. Daily time devoted to sedentary and nonsedentary activities averaged 290 +/- 155 minutes (range, 69 to 621) and 534 +/- 150 minutes (range, 180 to 783), respectively. Time spent on sedentary activities was directly proportional to fat mass percentage (r = 0.46; p < 0.05). It was the only variable, among the free-living physical-activity [EEAct, TEE/(REE+0.1 TEE) ratio, time spent in nonsedentary and sedentary activities] variables, which remained significantly in the multiple step-down regression analysis final equation (r = 0.46; p < 0.05). CONCLUSIONS: The positive relationship between adiposity and time spent on sedentary activities in 9-year-old boys suggests the importance of the role played by muscular activity, at least in the maintenance of obesity in childhood. Prepubertal children should be encouraged to spend less time on sedentary activities to treat and prevent their obesity.
Resumo:
Menopause and premature gonadal steroid deficiency are associated with increases in fat mass and body weight. Ovariectomized (OVX) mice also show reduced locomotor activity. Glucose-dependent-insulinotropic-polypeptide (GIP) is known to play an important role both in fat metabolism and locomotor activity. Therefore, we hypothesized that the effects of estrogen on the regulation of body weight, fat mass, and spontaneous physical activity could be mediated in part by GIP signaling. To test this hypothesis, C57BL/6 mice and GIP-receptor knockout mice (Gipr(-/-)) were exposed to OVX or sham operation (n = 10 per group). The effects on body composition, markers of insulin resistance, energy expenditure, locomotor activity, and expression of hypothalamic anorexigenic and orexigenic factors were investigated over 26 wk in all four groups of mice. OVX wild-type mice developed obesity, increased fat mass, and elevated markers of insulin resistance as expected. This was completely prevented in OVX Gipr(-/-) animals, even though their energy expenditure and spontaneous locomotor activity levels did not significantly differ from those of OVX wild-type mice. Cumulative food intake in OVX Gipr(-/-) animals was significantly reduced and associated with significantly lower hypothalamic mRNA expression of the orexigenic neuropeptide Y (NPY) but not of cocaine-amphetamine-related transcript (CART), melanocortin receptors (MCR-3 and MCR-4), or thyrotropin-releasing hormone (TRH). GIP receptors thus interact with estrogens in the hypothalamic regulation of food intake in mice, and their blockade may carry promising potential for the prevention of obesity in gonadal steroid deficiency.
Resumo:
The thermogenic response to a 100 g oral glucose load was measured prospectively (by indirect calorimetry) in three groups of obese subjects: (1) normal glucose tolerance (n = 12, initial weight 86.4 +/- 3.9 kg, BMI 30.4 +/- 1.1 kg/m2; (2) impaired glucose tolerance (n = 8, initial weight 105.3 +/- 7.6 kg, body mass index (BMI) 37.6 +/- 2.9 kg/m2; (3) diabetes (n = 12), initial weight 102.1 +/- 5.3 kg, BMI 36.2 +/- 2.0 kg/m2). The thermogenic response to glucose averaged 6.8 +/- 1.1 and 7.0 +/- 1.0 per cent, in the two non-diabetic obese groups respectively, and was significantly lower in the obese diabetic group (3.1 +/- 0.8 per cent). With the evolution of obesity (i.e. 6 years later), the glucose-induced thermogenesis (GIT) was significantly reduced in the non-diabetic groups (P less than 0.05) to 4.1 +/- 0.8 and 3.0 +/- 1.1 per cent respectively, and was still blunted in the diabetic group (2.1 +/- 0.7 per cent). The decrease in GIT was accompanied by a reduction in glucose tolerance and insulin response with no change in fasting plasma insulin. These effects were observed despite the fact that the body weight of the subject did not change significantly over the 6-year period. It is concluded that the decrease in GIT which accompanies the worsening of glucose tolerance and the occurrence of diabetes is a mechanism which may contribute to maintain the obesity state by a reduction of energy expenditure.
Resumo:
Oxygen consumption of collagenase-liberated rat adipocytes was measured by two different techniques: a microspectrophotometric method using hemoglobin as indicator of respiration and a technique using the oxygen electrode. These two completely different techniques gave similar values for oxygen consumption. With the spectrophotometric method, the oxygen consumption of single fat cells was determined. A close positive correlation (r = greater than 0.90) between oxygen consumption and fat cell size was observed in each tissue examined. With the oxygen electrode technique, oxygen consumption of adipocyte suspensions from young (40 days, 180 g) and old (90 days, 480 g) rats was examined. Fat cells of the suspensions were separated into classes of different size by a flotation technique. A significant positive correlation between fat cell size and oxygen consumption was observed in both young (r = 0.88) and old (r = 0.95) rats. However, the slope was much steeper in young rats. At a cell weight of 0.1 microgram the oxygen consumption was 0.364 and 0.086 microL O2/10(6) cells/min-1 in young and old rats, respectively. In the literature, a number of separate metabolic pathways have been found to be related positively to fat cell size and negatively to age. We conclude that these scattered metabolic observations are in agreement with integrated data on energy expenditure as evaluated from oxygen consumption. Estimations of the energy expenditure of adipose tissue indicates that this tissue is responsible for about 1% and 0.5% of the total energy expenditure in young and old rats, respectively.
Resumo:
The objective of this study was to investigate the relationship between the physical activity (PA) and its related variables under confinement and in free-living conditions in Asian individuals, where no such information presently exists. The subjects consisted of eighty-six Japanese individuals with a mean age of 38+/-12 years. Under confinement in a large respiratory chamber, the energy expenditure (EE) was measured for 24h. In addition, two moderate walking exercises of 30 min each on a horizontal treadmill were assigned. Free-living measurements of 7 days were also performed using a validated accelerometer. The PA level in the chamber (1.47+/-0.11), expressed as a multiple of the basal EE, was lower than that in free-living conditions (1.53+/-0.12) (p<0.001). However, the two values were closely correlated (r=0.744, p<0.001). Conversely, a residual analysis showed a wide variation in the mean difference for both conditions and revealed a significant systematic error (r=-0.548, p<0.001), thus indicating an increased gap with increasing PA levels in free-living conditions. Similar results were obtained following the exclusion of the imposed exercise sessions. In contrast, the daily step counts under both conditions did not show any correlation. The PA level in the chamber (including and excluding imposed walking exercises) is compatible with the PA level in free-living conditions at the group level, although the daily step counts are unrelated. Thus, the PA level in the chamber may provide valuable information to help us achieve a better understanding of human PA in daily life as it is related to behavioral research.
Protein turnover and thermogenesis in response to high-protein and high-carbohydrate feeding in men.
Resumo:
The rates of energy expenditure and wholebody protein turnover were determined during a 9-h period in a group of seven men while they received hourly isocaloric meals of high-protein (HP) or high-carbohydrate (HC) content. Their responses to feeding were compared with those to a short period of fasting (15-24 h). The 9-h thermic response to the repeated feeding of HP meals was found to be greater than that to the HC meals (9.6 +/- 0.6% vs 5.7 +/- 0.4% of the energy intake, respectively, means +/- SEM, p less than 0.01). The rate of whole-body nitrogen turnover over 9 h increased from 17.6 +/- 2.2 g on the fasting day to 27.4 +/- 1.4 g during HC feeding (NS) and there was a further increase to 58.2 +/- 5.3 g resulting from HP feeding (p less than 0.001). By using theoretical estimates (based upon ATP requirements) of the metabolic cost of protein synthesis, 36 +/- 9% of the thermic response to HC feeding and 68 +/- 3% of the response to HP feeding could be accounted for by the increases in protein synthesis compared with the fasting state.
Resumo:
ABSTRACT: INTRODUCTION: Hyperlactatemia represents one prominent component of the metabolic response to sepsis. In critically ill patients, hyperlactatemia is related to the severity of the underlying condition. Both an increased production and a decreased utilization and clearance might be involved in this process, but their relative contribution remains unknown. The present study aimed at assessing systemic and muscle lactate production and systemic lactate clearance in healthy human volunteers, using intravenous endotoxin (LPS) challenge. METHODS: Fourteen healthy male volunteers were enrolled in 2 consecutive studies (n = 6 in trial 1 and n = 8 in trial 2). Each subject took part in one of two investigation days (LPS-day with endotoxin injection and placebo-day with saline injection) separated by one week at least and in a random order. In trial 1, their muscle lactate metabolism was monitored using microdialysis. In trial 2, their systemic lactate metabolism was monitored by means of a constant infusion of exogenous lactate. Energy metabolism was monitored by indirect calorimetry and glucose kinetics was measured with 6,6-H2 glucose. RESULTS: In both trials, LPS increased energy expenditure (p = 0.011), lipid oxidation (p<0.0001), and plasma lactate concentration (p = 0.016). In trial 1, lactate concentration in the muscle microdialysate was higher than in blood, indicating lactate production by muscles. This was, however, similar with and without LPS. In trial 2, calculated systemic lactate production increased after LPS (p = 0.031), while lactate clearance remained unchanged. CONCLUSIONS: LPS administration increases lactatemia by increasing lactate production rather than by decreasing lactate clearance. Muscle is, however, unlikely to be a major contributor to this increase in lactate production. TRIAL REGISTRATION: ClinicalTrials.gov NCT01647997.