288 resultados para Dose-response relationship (Biochemistry)
Resumo:
Lymph node cells derived from A.TH or A.TL mice primed with beef cytochrome c show striking patterns of reactivity when assayed in vitro for antigen-induced T cell proliferation. Whereas cells from A.TH mice respond specifically to beef cytochrome c or peptides composed of amino acids 1-65 and 81-104, cells from A.TL mice respond neither to beef cytochrome c nor to peptide 1-65, but proliferate following exposure to either peptide 81-104 or to a cytochrome c hybrid molecule in which the N-terminal peptide of beef (1-65) was substituted by a similar peptide obtained from rabbit cytochrome c. Thus, T cells from mice phenotypically unresponsive to beef cytochrome may, in fact, contain populations of lymphocytes capable of responding to a unique peptide, the response to which is totally inhibited when the same fragment is presented in the sequence of the intact protein.
Resumo:
OBJECTIVE: Most studies on alcohol as a risk factor for injuries have been mechanism specific, and few have considered several mechanisms simultaneously or reported alcohol-attributable fractions (AAFs)-which was the aim of the current study. METHOD: Data from 3,592 injured and 3,489 noninjured patients collected between January 2003 and June 2004 in the surgical ward of the emergency department of the Lausanne University Hospital (Switzerland) were analyzed. Four injury mechanisms derived from the International Classification of Diseases, 10th Revision, were considered: transportation-related injuries, falls, exposure to forces and other events, and interpersonal violence. Multinomial logistic regression models were calculated to estimate the risk relationships of different levels of alcohol consumption, using noninjured patients as quasi-controls. The AAFs were then calculated. RESULTS: Risk relationships between injury and acute consumption were found across all mechanisms, commonly resulting in dose-response relationships. Marked differences between mechanisms were observed for relative risks and AAFs, which varied between 15.2% and 33.1% and between 10.1% and 35.9%, depending on the time window of consumption (either 6 hours or 24 hours before injury, respectively). Low and medium levels of alcohol consumption generally were associated with the most AAFs. CONCLUSIONS: This study underscores the implications of even low levels of alcohol consumption on the risk of sustaining injuries through any of the mechanisms considered. Substantial AAFs are reported for each mechanism, particularly for injuries resulting from interpersonal violence. Observation of a so-called preventive paradox phenomenon is discussed, and prevention or intervention measures are described.
Resumo:
The ability to express tightly controlled amounts of endogenous and recombinant proteins in plant cells is an essential tool for research and biotechnology. Here, the inducibility of the soybean heat-shock Gmhsp17.3B promoter was addressed in the moss Physcomitrella patens, using beta-glucuronidase (GUS) and an F-actin marker (GFP-talin) as reporter proteins. In stably transformed moss lines, Gmhsp17.3B-driven GUS expression was extremely low at 25 degrees C. In contrast, a short non-damaging heat-treatment at 38 degrees C rapidly induced reporter expression over three orders of magnitude, enabling GUS accumulation and the labelling of F-actin cytoskeleton in all cell types and tissues. Induction levels were tightly proportional to the temperature and duration of the heat treatment, allowing fine-tuning of protein expression. Repeated heating/cooling cycles led to the massive GUS accumulation, up to 2.3% of the total soluble proteins. The anti-inflammatory drug acetyl salicylic acid (ASA) and the membrane-fluidiser benzyl alcohol (BA) also induced GUS expression at 25 degrees C, allowing the production of recombinant proteins without heat-treatment. The Gmhsp17.3B promoter thus provides a reliable versatile conditional promoter for the controlled expression of recombinant proteins in the moss P. patens.
Resumo:
The chiral antidepressant venlafaxine (VEN) is both a serotonin and a norepinephrine uptake inhibitor. CYP2D6 and CYP3A4 contribute to its metabolism, which has been shown to be stereoselective. Ten CYP2D6 genotyped and depressive (F32x and F33x, ICD-10) patients participated in an open study on the pharmacokinetic and pharmacodynamic consequences of a carbamazepine augmentation in VEN non-responders. After an initial 4-week treatment with VEN (195 +/- 52 mg/day), the only poor metabolizer out of 10 depressive patients had the highest plasma concentrations of S-VEN and R-VEN, respectively, whereas those of R-O-demethyl-VEN were lowest. Five non-responders completed the second 4-week study period, during which they were submitted to a combined VEN-carbamazepine treatment. In the only non-responder to this combined treatment, there was a dramatic decrease of both enantiomers of VEN, O-demethylvenlafaxine, N-desmethylvenlafaxine and N, O-didesmethylvenlafaxine in plasma, which suggests non-compliance, although metabolic induction by carbamazepine cannot entirely be excluded. The administration of carbamazepine [mean +/- SD, range: 360 +/- 89 (200-400) mg/day] over 4 weeks did not result in a significant modification of the plasma concentrations of the enantiomers of VEN and its O- and N-demethylated metabolites in the other patients. In conclusion, these preliminary observations suggest that the combination of VEN and carbamazepine represents an interesting augmentation strategy by its efficacy, tolerance and absence of pharmacokinetic modifications. However, these findings should be verified in a more comprehensive study.
Resumo:
Doxorubicin (DOX) is a potent available antitumor agent; however, its clinical use is limited because of its cardiotoxicity. Cell death is a key component in DOX-induced cardiotoxicity, but its mechanisms are elusive. Here, we explore the role of superoxide, nitric oxide (NO), and peroxynitrite in DOX-induced cell death using both in vivo and in vitro models of cardiotoxicity. Western blot analysis, real-time PCR, immunohistochemistry, flow cytometry, fluorescent microscopy, and biochemical assays were used to determine the markers of apoptosis/necrosis and sources of NO and superoxide and their production. Left ventricular function was measured by a pressure-volume system. We demonstrated increases in myocardial apoptosis (caspase-3 cleavage/activity, cytochrome c release, and TUNEL), inducible NO synthase (iNOS) expression, mitochondrial superoxide generation, 3-nitrotyrosine (NT) formation, matrix metalloproteinase (MMP)-2/MMP-9 gene expression, poly(ADP-ribose) polymerase activation [without major changes in NAD(P)H oxidase isoform 1, NAD(P)H oxidase isoform 2, p22(phox), p40(phox), p47(phox), p67(phox), xanthine oxidase, endothelial NOS, and neuronal NOS expression] and decreases in myocardial contractility, catalase, and glutathione peroxidase activities 5 days after DOX treatment to mice. All these effects of DOX were markedly attenuated by peroxynitrite scavengers. Doxorubicin dose dependently increased mitochondrial superoxide and NT generation and apoptosis/necrosis in cardiac-derived H9c2 cells. DOX- or peroxynitrite-induced apoptosis/necrosis positively correlated with intracellular NT formation and could be abolished by peroxynitrite scavengers. DOX-induced cell death and NT formation were also attenuated by selective iNOS inhibitors or in iNOS knockout mice. Various NO donors when coadministered with DOX but not alone dramatically enhanced DOX-induced cell death with concomitant increased NT formation. DOX-induced cell death was also attenuated by cell-permeable SOD but not by cell-permeable catalase, the xanthine oxidase inhibitor allopurinol, or the NADPH oxidase inhibitors apocynine or diphenylene iodonium. Thus, peroxynitrite is a major trigger of DOX-induced cell death both in vivo and in vivo, and the modulation of the pathways leading to its generation or its effective neutralization can be of significant therapeutic benefit.
Resumo:
A fluconazole 25 microg disk diffusion test was used to test 2230 consecutively isolated Candida strains from 42 different hospital laboratories in 23 countries. Ninety seven percent of 1634 Candida albicans isolates and 83.4% of 596 non-Candida albicans isolates were susceptible to fluconazole, applying the proposed breakpoints (> or = 26 mm for susceptible strains and 18-25 mm for dose-dependent susceptible strains). This is the first hospital laboratory study to evaluate a large number and wide range of sequential Candida isolates from patients with all types of hospital infections. The fluconazole disk diffusion test appears to be a low-cost, reproducible, and accurate means of assessing the in vitro susceptibility of Candida isolates.
Resumo:
Different interactions have been described between glucocorticoids and the product of the ob gene leptin. Leptin can inhibit the activation of the hypothalamo-pituitary-adrenal axis by stressful stimuli, whereas adrenal glucocorticoids stimulate leptin production by the adipocyte. The present study was designed to investigate the potential direct effects of leptin to modulate glucocorticoid production by the adrenal. Human adrenal glands from kidney transplant donors were dissociated, and isolated primary cells were studied in vitro. These cells were preincubated with recombinant leptin (10(-10)-10(-7) M) for 6 or 24 h, and basal or ACTH-stimulated cortisol secretion was subsequently measured. Basal cortisol secretion was unaffected by leptin, but a significant and dose-dependent inhibition of ACTH-stimulated cortisol secretion was observed [down by 29 +/- 0.1% of controls with the highest leptin dose, P < 0.01 vs. CT (unrelated positive control)]. This effect of leptin was also observed in rat primary adrenocortical cells, where leptin inhibited stimulated corticosterone secretion in a dose-dependent manner (down by 46 +/- 0.1% of controls with the highest leptin dose, P < 0.001 vs. CT). These effects of leptin in adrenal cells are likely mediated by the long isoform of the leptin receptor (OB-R), because its transcript was found to be expressed in the adrenal tissue and leptin had no inhibitory effect in adrenal glands obtained from db/db mice. Therefore, leptin inhibits directly stimulated cortisol secretion from human and rat adrenal glands, and this may represent an important mechanism to modulate glucocorticoid levels in various metabolic states.
Resumo:
BACKGROUND: Aminoglycosides are mandatory in the treatment of severe infections in burns. However, their pharmacokinetics are difficult to predict in critically ill patients. Our objective was to describe the pharmacokinetic parameters of high doses of tobramycin administered at extended intervals in severely burned patients. METHODS: We prospectively enrolled 23 burned patients receiving tobramycin in combination therapy for Pseudomonas species infections in a burn ICU over 2 years in a therapeutic drug monitoring program. Trough and post peak tobramycin levels were measured to adjust drug dosage. Pharmacokinetic parameters were derived from two points first order kinetics. RESULTS: Tobramycin peak concentration was 7.4 (3.1-19.6)microg/ml and Cmax/MIC ratio 14.8 (2.8-39.2). Half-life was 6.9 (range 1.8-24.6)h with a distribution volume of 0.4 (0.2-1.0)l/kg. Clearance was 35 (14-121)ml/min and was weakly but significantly correlated with creatinine clearance. CONCLUSION: Tobramycin had a normal clearance, but an increased volume of distribution and a prolonged half-life in burned patients. However, the pharmacokinetic parameters of tobramycin are highly variable in burned patients. These data support extended interval administration and strongly suggest that aminoglycosides should only be used within a structured pharmacokinetic monitoring program.
Resumo:
It has been suggested that Ménière's disease is part of a polyganglionitis in which symptoms result from the reactivation of neurotropic virus within the internal auditory canal, and that intratympanic applications of an antiviral agent might be an efficient therapy. In 2002, we performed a pilot study ending with encouraging results. Control of vertigo was achieved in 80% of the 17 patients included. We present here a prospective, double-blind study, with a 2-year follow-up, in 29 patients referred by ENT practitioners for a surgical treatment after failure of a medical therapy. The participation in the study was offered to patients prior to surgery. A solution of ganciclovir 50 mg/ml or of NaCl 9% was delivered for 10 consecutive days via a microwick inserted into the tympanic membrane in the direction of the round window or through a ventilation tube. One patient was withdrawn from the study immediately after the end of the injections. He could not complete the follow-up period, because of persisting vertigo. As he had received the placebo, he was then treated with the solution of ganciclovir. Symptoms persisted and he underwent a vestibular neurectomy. Among the remaining 28 patients, surgery could be postponed in 22 (81%). Surgery remained necessary to control vertigo in 3 patients from the group that received the antiviral agent, and in 3 from the control group. Using an analogical scale, patients of both groups indicated a similar improvement of their health immediately after the intratympanic injections. The scores obtained with a 36-item short-form health survey quality of life questionnaire and the Dizziness Handicap Inventory were also similar for both groups. In conclusion, most patients were improved after the intratympanic injections, but there was no obvious difference between the treated and control groups. The benefit might be due to the middle ear ventilation or reflect an improvement in the patients' emotional state.
Resumo:
A sample of 15 patients participating in an injectable methadone trial and of 15 patients in an oral methadone maintenance treatment, who admitted injecting part or all of their methadone take-home doses, were compared to 20 patients in maintenance treatment who use methadone exclusively by mouth. The present study confirms the poorer general health, the higher levels of emotional, psychological or psychiatric problems, the higher use of illicit drugs, and the higher number of problems related to employment and support associated with the use of the intravenous mode of administration of methadone. As expected, due to the shunt of metabolism in the gut wall and of the liver first-pass effect, higher concentration to dose ratios of (R)-methadone, which is the active enantiomer, were measured in the intravenous group (23% increase). This difference reached an almost statistically significant value (P = 0.054). This raises the question whether the effect of a higher methadone dose could be unconsciously sought by some of the intravenous methadone users.
Resumo:
Peroxynitrite induced in vitro a dose dependent toxicity on retinal pigmented epithelial (RPE) cells. Cell death was partially mediated by apoptosis as demonstrated by nuclear fragmentation and TdT-mediated dUTP nick-end labeling assay. Peroxynitrite-induced tyrosine nitration was revealed by immunocytochemistry, both in the cytoplasm and in the nucleus of the cells. Nitration was not observed in RPE cells, producing nitric oxide (NO) after stimulation by lipopolysacharide and interferon-g (IFN-gamma), suggesting that peroxynitrite was not formed in vitro in such conditions. Peroxynitrite could be responsible for the retinal damages observed in pathological conditions in which NO has been demonstrated to be involved. In this context, EGb761, identified as a free radical scavenger, was showed herein to protect RPE cells against peroxynitrite injury.
Resumo:
This study investigates the effects of digoxin, an inhibitor of the Na+ pump (Na(+)-K(+)-ATPase), on resting metabolic rate (RMR), respiratory quotient (RQ), and nutrient oxidation rate. Twelve healthy male subjects followed a double-blind protocol design and received either 1 mg/day digoxin or a placebo 2 days before indirect calorimetry measurements. Digoxin induced a 0.22 +/- 0.07 kJ/min or 3.8 +/- 1.5% (mean +/- SE, P = 0.01) decrease in RMR and a 0.40 +/- 0.13 kJ/min (P = 0.01) decrease in fat oxidation rate, whereas carbohydrate and protein oxidation rates did not change significantly. A dose-response relationship between serum digoxin and RQ was observed. These results suggest that digoxin reduces not only RMR but also fat oxidation rate by mechanisms that remain to be elucidated. Because a linkage and an association between genes coding the Na(+)-K(+)-ATPase and the RQ have been previously observed, the present demonstration of an effect of Na(+)-K(+)-ATPase inhibition on fat oxidation rate strengthens the concept that the activity of this enzyme may play a role in body weight regulation.