218 resultados para DYNAMIC FEATURES
Resumo:
Purpose: 1. To review Ct features suggestive of saprophytic aspergillosis (aspergilloma) and to correlate them with the final pathological results. 2. To illustrate the wide range of differential diagnosis. Methods and materials: The electronic database of our department from 1995 to 2007 revealed CT reports of 48 patients that had been considered very suggestive of aspergilloma. Two radiologists with 6 and 12 years experience in thoracic radiology jointly reviewed the corresponding CT features including ancillary findings and the underlying lung diseases and correlated them with the final pathological diagnosis. Results: Forty patients could be included in the study (12 women, mean age 52), while in 8 patients there was no adequate clinical follow-up. In 17 patients the diagnosis "mycetoma" due to aspergillus fumigatus infection was confirmed, either by surgery, biopsy or bronchoscopy. In 23 patients, differential diagnoses were found, such as cavitating bronchial carcinoma (n = 7), bacterial abscess (n = 3), typical (n = 2) and atypical (n = 2) tuberculosis, as well as inflammatory changes due to mucoviscidosis (n = 1), Wegener's disease (n = 1) or chronic obstructive pulmonary disease (n = 3). Fibromyxoide hamartoma, lung infarction and bronchomucocele were responsible for the typical CT feature in one patient each. Conclusion: 1. The typical CT feature suggesting mycetoma is softtissue proliferation within a pre-existing wall-thickened lung cavity, oten even considered "pathognomonic". However, this diagnosis was finally confirmed by surgery or laboratory findings in less than 50% of patients only. 2. Since differential diagnoses are very large, not only including cavitating lung cancer and tuberculosis, the individual underlying lung disease needs strongly being taken into account often giving the best clue for the correct diagnosis.
Resumo:
Résumé -Caractéristiques architecturales des génomes bactériens et leurs applications Les bactéries possèdent généralement un seul chromosome circulaire. A chaque génération, ce chromosome est répliqué bidirectionnellement, par deux complexes enzymatiques de réplication se déplaçant en sens opposé depuis l'origine de réplication jusqu'au terminus, situé à l'opposé. Ce mode de réplication régit l'architecture du chromosome -l'orientation des gènes par rapport à la réplication, notamment - et est en grande partie à l'origine des pressions qui provoquent la variation de la composition en nucléotides du génome, hors des contraintes liées à la structure et à la fonction des protéines codées sur le chromosome. Le but de cette thèse est de contribuer à quantifier les effets de la réplication sur l'architecture chromosomique, en s'intéressant notamment aux gènes des ARN ribosomiques, cruciaux pour la bactérie. D'un autre côté, cette architecture est spécifique à l'espèce et donne ainsi une «identité génomique » aux gènes. Il est démontré ici qu'il est possible d'utiliser des marqueurs «naïfs » de cette identité pour détecter, notamment dans le génome du staphylocoque doré, des îlots de pathogénicité, qui concentrent un grand nombre de facteurs de virulence de la bactérie. Ces îlots de pathogénicité sont mobiles, et peuvent passer d'une bactérie à une autre, mais conservent durant un certain temps l'identité génomique de leur hôte précédent, ce qui permet de les reconnaître dans leur nouvel hôte. Ces méthodes simples, rapides et fiables seront de la plus haute importance lorsque le séquençage des génomes entiers sera rapide et disponible à très faible coût. Il sera alors possible d'analyser instantanément les déterminants pathogéniques et de résistance aux antibiotiques des agents pathogènes. Summary The bacterial genome is a highly organized structure, which may be referred to as the genome architecture, and is mainly directed by DNA replication. This thesis provides significant insights in the comprehension of the forces that shape bacterial chromosomes, different in each genome and contributing to confer them an identity. First, it shows the importance of the replication in directing the orientation of prokaryotic ribosomal RNAs, and how it shapes their nucleotide composition in a tax on-specific manner. Second, it highlights the pressure acting on the orientation of the genes in general, a majority of which are transcribed in the same direction as replication. Consequently, apparent infra-arm genome rearrangements, involving an exchange of the leading/lagging strands and shown to reduce growth rate, are very likely artifacts due to an incorrect contig assembly. Third, it shows that this genomic identity can be used to detect foreign parts in genomes, by establishing this identity for a given host and identifying the regions that deviate from it. This property is notably illustrated with Staphylococcus aureus: known pathogenicity islands and phages, and putative ancient pathogenicity islands concentrating many known pathogenicity-related genes are highlighted; the analysis also detects, incidentally, proteins responsible for the adhesion of S. aureus to the hosts' cells. In conclusion, the study of nucleotide composition of bacterial genomes provides the opportunity to better understand the genome-level pressures that shape DNA sequences, and to identify genes and regions potentially related to pathogenicity with fast, simple and reliable methods. This will be of crucial importance when whole-genome sequencing will be a rapid, inexpensive and routine tool.
Resumo:
Turtle Mountain in Alberta, Canada has become an important field laboratory for testing different techniques related to the characterization and monitoring of large slope mass movements as the stability of large portions of the eastern face of the mountain is still questionable. In order to better quantify the volumes potentially unstable and the most probable failure mechanisms and potential consequences, structural analysis and runout modeling were preformed. The structural features of the eastern face were investigated using a high resolution digital elevation model (HRDEM). According to displacement datasets and structural observations, potential failure mechanisms affecting different portions of the mountain have been assessed. The volumes of the different potentially unstable blocks have been calculated using the Sloping Local Base Level (SLBL) method. Based on the volume estimation, two and three dimensional dynamic runout analyses have been performed. Calibration of this analysis is based on the experience from the adjacent Frank Slide and other similar rock avalanches. The results will be used to improve the contingency plans within the hazard area.
Resumo:
Purpose: To work out certain, well-defined aetiologies frequently associated with mesenteric venous thrombosis (MVT) in order to predict a typical population at risk, since MVT is nowadays often incidentally detected on cross-sectional imaging. To demonstrate the MDCT features, frequency and extent of associated bowel ischemia according to the underlying pathology. Methods and materials: Our electronic database revealed 71 patients (25 women, mean age 55) with thrombosis of the superior and/or inferior mesenteric vein detected by MDCT between 2000 and 2008. Two radiologists jointly reviewed the corresponding MDCT features including intraluminal extension, underlying aetiology and associated bowel ischemia, if present. Results: MVT was associated with carcinoma in 31 (43.7%) patients (pancreas 21.1%, liver 9.9%, others 12.7%). Concomitant inflammation was seen in 15 (21.1%) patients (pancreatitis 11.3%, diverticulitis 4.2%, others 5.6%), whereas coagulation/hematologic disorders were found in 7 (9.9%) patients, liver cirrhosis in 6 (8.5%), mixed/miscellaneous causes in 5 (7%) and still unknown aetiologies in 5 patients (7%). MVT resulted from recent operations in 2 (2.8%) patients. MDCT features of venous bowel ischemia were present in 15 patients (21.1%). 46.5% of MVT were (sub) acute, while 53.5% chronic. The luminal extension was complete in 52.1%, subtotal (>50% of lumen) in 22.5% and partial (<50% of lumen) in 25.4% of patients, consisting either of blood clots (76.1%) or tumoral tissue (23.9%), the latter mainly due to pancreas adenocarcinoma (76.4%). Conclusion: MDCT features of MVT are seen with a wide range of underlying diseases. Signs of intestinal ischemia are infrequently associated, mostly occurring with coagulation/hematologic disorders (40%).
Resumo:
Emotion regulation is crucial for successfully engaging in social interactions. Yet, little is known about the neural mechanisms controlling behavioral responses to emotional expressions perceived in the face of other people, which constitute a key element of interpersonal communication. Here, we investigated brain systems involved in social emotion perception and regulation, using functional magnetic resonance imaging (fMRI) in 20 healthy participants. The latter saw dynamic facial expressions of either happiness or sadness, and were asked to either imitate the expression or to suppress any expression on their own face (in addition to a gender judgment control task). fMRI results revealed higher activity in regions associated with emotion (e.g., the insula), motor function (e.g., motor cortex), and theory of mind (e.g., [pre]cuneus) during imitation. Activity in dorsal cingulate cortex was also increased during imitation, possibly reflecting greater action monitoring or conflict with own feeling states. In addition, premotor regions were more strongly activated during both imitation and suppression, suggesting a recruitment of motor control for both the production and inhibition of emotion expressions. Expressive suppression (eSUP) produced increases in dorsolateral and lateral prefrontal cortex typically related to cognitive control. These results suggest that voluntary imitation and eSUP modulate brain responses to emotional signals perceived from faces, by up- and down-regulating activity in distributed subcortical and cortical networks that are particularly involved in emotion, action monitoring, and cognitive control.
Resumo:
BACKGROUND: Neurodegeneration with brain iron accumulation (NBIA) refers to genetically heterogenous paediatric neurodegenerative disorders characterised by basal ganglia iron deposition. One major cause is recessive mutations in the PLA2G6 gene. While strabismus and optic nerve pallor have been reported for PLA2G6-related disease, the ophthalmic phenotype is not carefully defined. In this study we characterise the ophthalmic phenotype of PLA2G6-related NBIA. METHODS: Prospective cohort study. RESULTS: The eight patients were 4-26 years old when examined. All had progressive cognitive and motor regression first noted between 9 months and 6 years of age that typically first manifested as difficulty walking (ataxia). Ophthalmic examination was sometimes limited by cognitive ability. Four of eight had exotropia, 7/7 bilateral supraduction defect, 5/7 poor convergence, 6/8 saccadic pursuit, 4/8 saccadic intrusions that resembled square-wave jerks, and 8/8 bilateral optic nerve head pallor. All patients lacked Bell phenomenon. CONCLUSIONS: Upgaze palsy, although not a previously reported finding, was confirmed in all patients (except in one for whom assessment could not be performed) and thus can be considered part of the phenotype in children and young adults. Other frequent findings not previously highlighted were abnormal convergence, saccadic pursuit, and saccadic intrusions. Optic nerve head pallor and strabismus, previously reported findings in the disease, were found in 100% and 50% of our cohort, respectively, and the strabismus in our series was always exotropia. Taken together, these clinical findings may be helpful in distinguishing PLA2G6-related neurodegeneration from the other major cause of NBIA, recessive PANK2 mutations.
Resumo:
Purpose: To assess the visibility and the features of ECUATS on 3.0-T MRI studies, and evaluate their correlation with tendinosis. Methods and materials: Our retrospective study was approved by IRB, with waiver of informed consent. Fifty wrist MRI and 48 MR arthrographies from 98 patients (55 males, 43 females, mean age 42.3 years) performed between January and November 2009 on 3.0-T units were reviewed. Images (transverse T1, T2, FS Gd T1 and VIBE) were independently analyzed by two radiologists, and a consensus reached with a third reader in case of disagreement. The visibility of ECUATS was assessed on each available transverse sequence. When present, ECUATS' origins, diameters and insertions were noted. ECU tendinosis was also evaluated. Inter-rater agreement was assessed using Cohen's Kappa coefficient. Results: ECUATS observed prevalence was 23.5% (23/98). ECUATS were more frequently noted on the VIBE sequence, with a good inter-rater agreement (Kappa = 0.72). Origins were noted in 95.7% of cases: 3 were at the level of, and 20 distal to ECU subsheath. Insertions were seen in 43.5%: 2 were on 5th metacarpal bone, 8 on extensor apparatus of 5th finger. ECUATS mean shortest and longest diameters were 0.54 and 0.85 mm respectively. ECU tendinosis was statistically more frequently noted in patients with ECUATS (p <0.05). Conclusion: ECUATS are readily visible on 3.0-T MRI studies, especially on transverse GRE VIBE images. ECU tendinosis is more frequently noted in patients bearing ECUATS.
Resumo:
Besides tumor cells, the tumor microenvironment harbors a variety of host-derived cells, such as endothelial cells, fibroblasts, innate and adaptive immune cells. It is a complex and highly dynamic environment, providing very important cues to tumor development and progression. Tumor-associated endothelial cells play a key role in this process. On the one hand, they form tumor-associated (angiogenic) vessels through sprouting from locally preexisting vessels or recruitment of bone marrow-derived endothelial progenitor cells, to provide nutritional support to the growing tumor. On the other hand, they are the interface between circulating blood cells, tumor cells and the extracellular matrix, thereby playing a central role in controlling leukocyte recruitment, tumor cell behavior and metastasis formation. Hypoxia is a critical parameter modulating the tumor microenvironment and endothelial/tumor cell interactions. Under hypoxic stress, tumor cells produce factors that promote tumor angiogenesis, tumor cell motility and metastasis. Among these factors, VEGF, a main angiogenesis modulator, can also play a critical role in the control of immune tolerance. This review discusses some aspects of the role of endothelial cells within tumor microenvironment and emphasizes their interaction with tumor cells, the extracellular matrix and with immune killer cells. We will also address the role played by circulating endothelial progenitor cells and illustrate their features and mechanism of recruitment to the tumor microenvironment and their role in tumor angiogenesis.
Resumo:
Oculo-auriculo-vertebral spectrum is a complex developmental disorder characterised mainly by anomalies of the ear, hemifacial microsomia, epibulbar dermoids and vertebral anomalies. The aetiology is largely unknown, and the epidemiological data are limited and inconsistent. We present the largest population-based epidemiological study to date, using data provided by the large network of congenital anomalies registries in Europe. The study population included infants diagnosed with oculo-auriculo-vertebral spectrum during the 1990-2009 period from 34 registries active in 16 European countries. Of the 355 infants diagnosed with oculo-auriculo-vertebral spectrum, there were 95.8% (340/355) live born, 0.8% (3/355) fetal deaths, 3.4% (12/355) terminations of pregnancy for fetal anomaly and 1.5% (5/340) neonatal deaths. In 18.9%, there was prenatal detection of anomaly/anomalies associated with oculo-auriculo-vertebral spectrum, 69.7% were diagnosed at birth, 3.9% in the first week of life and 6.1% within 1 year of life. Microtia (88.8%), hemifacial microsomia (49.0%) and ear tags (44.4%) were the most frequent anomalies, followed by atresia/stenosis of external auditory canal (25.1%), diverse vertebral (24.3%) and eye (24.3%) anomalies. There was a high rate (69.5%) of associated anomalies of other organs/systems. The most common were congenital heart defects present in 27.8% of patients. The prevalence of oculo-auriculo-vertebral spectrum, defined as microtia/ear anomalies and at least one major characteristic anomaly, was 3.8 per 100,000 births. Twinning, assisted reproductive techniques and maternal pre-pregnancy diabetes were confirmed as risk factors. The high rate of different associated anomalies points to the need of performing an early ultrasound screening in all infants born with this disorder.
Resumo:
Multiple epiphyseal dysplasia (MED) is a genetically heterogeneous group of diseases characterized by variable degrees of epiphyseal abnormality primarily involving the hip and knee joints. The purpose of this study was to investigate the frequency of mutations in individuals with a clinical and radiographic diagnosis of MED and to test the hypothesis that characteristic radiological findings may be helpful in predicting the gene responsible. The radiographs of 74 Korean patients were evaluated by a panel of skeletal dysplasia experts. Six genes known to be associated with MED (COMP, MATN3, COL9A1, COL9A2, COL9A3, and DTDST) were screened by sequencing. Mutations were found in 55 of the 63 patients (87%). MATN3 mutations were found in 30 patients (55%), followed by COMP mutations in 23 (41%), and COL9A2 and DTDST mutations in one patient (2%) each. Comparisons of radiographic findings in patients with COMP and MATN3 mutations showed that albeit marked abnormalities in hip and knee joints were observed in both groups, the degree of involvement and the morphology of dysplastic epiphyses differed markedly. The contour of the pelvic acetabulum, the presence of metaphyseal vertical striations, and/or the brachydactyly of the hand were also found to be highly correlated with the genotypes. The study confirms that MATN3 and COMP are the genes most frequently responsible for MED and that subtle radiographic signs may give precious indications on which gene(s) should be prioritized for mutational screening in a given individual.
Resumo:
The mouse Grueneberg ganglion (GG) is an olfactory subsystem located at the tip of the nose close to the entry of the naris. It comprises neurons that are both sensitive to cold temperature and play an important role in the detection of alarm pheromones (APs). This chemical modality may be essential for species survival. Interestingly, GG neurons display an atypical mammalian olfactory morphology with neurons bearing deeply invaginated cilia mostly covered by ensheathing glial cells. We had previously noticed their morphological resemblance with the chemosensory amphid neurons found in the anterior region of the head of Caenorhabditis elegans (C. elegans). We demonstrate here further molecular and functional similarities. Thus, we found an orthologous expression of molecular signaling elements that was furthermore restricted to similar specific subcellular localizations. Calcium imaging also revealed a ligand selectivity for the methylated thiazole odorants that amphid neurons are known to detect. Cellular responses from GG neurons evoked by chemical or temperature stimuli were also partially cGMP-dependent. In addition, we found that, although behaviors depending on temperature sensing in the mouse, such as huddling and thermotaxis did not implicate the GG, the thermosensitivity modulated the chemosensitivity at the level of single GG neurons. Thus, the striking similarities with the chemosensory amphid neurons of C. elegans conferred to the mouse GG neurons unique multimodal sensory properties.