182 resultados para DEVELOPING MAMMALIAN RETINA
Resumo:
Coexisting workloads from professional, household and family, and caregiving activities for frail parents expose middle-aged individuals, the so-called "Sandwich Generation", to potential health risks. Current trends suggest that this situation will continue or increase. Thus SG health promotion has become a nursing concern. Most existing research considers coexisting workloads a priori pathogenic. Most studies have examined the association of one, versus two, of these three activities with health. Few studies have used a nursing perspective. This article presents the development of a framework based on a nursing model. We integrated Siegrist's Effort-Reward Imbalance middle-range theory into "Neuman Systems Model". The latter was chosen for its salutogenic orientation, its attention to preventive nursing interventions and the opportunity it provides to simultaneously consider positive and negative perceptions of SG health and SG coexisting workloads. Finally, it facilitated a theoretical identification of health protective factors.
Resumo:
The cuticle is an essential diffusion barrier on aerial surfaces of land plants whose structural component is the polyester cutin. The PERMEABLE CUTICLE1/ABCG32 (PEC1) transporter is involved in plant cuticle formation in Arabidopsis. The gpat6 pec1 and gpat4 gapt8 pec1 double and triple mutants are characterized. Their PEC1-specific contributions to aliphatic cutin composition and cuticle formation during plant development are revealed by gas chromatography/mass spectrometry and Fourier-transform infrared spectroscopy. The composition of cutin changes during rosette leaf expansion in Arabidopsis. C16:0 monomers are in higher abundance in expanding than in fully expanded leaves. The atypical cutin monomer C18:2 dicarboxylic acid is more prominent in fully expanded leaves. Findings point to differences in the regulation of several pathways of cutin precursor synthesis. PEC1 plays an essential role during expansion of the rosette leaf cuticle. The reduction of C16 monomers in the pec1 mutant during leaf expansion is unlikely to cause permeability of the leaf cuticle because the gpat6 mutant with even fewer C16:0 monomers forms a functional rosette leaf cuticle at all stages of development. PEC1/ABCG32 transport activity affects cutin composition and cuticle structure in a specific and non-redundant fashion.
Resumo:
Successful generation of high producing cell lines requires the generation of cell clones expressing the recombinant protein at high levels and the characterization of the clones' ability to maintain stable expression levels. The use of cis-acting epigenetic regulatory elements that improve this otherwise long and uncertain process has revolutionized recombinant protein production. Here we review and discuss new insights into the molecular mode of action of the matrix attachment regions (MARs) and ubiquitously-acting chromatin opening elements (UCOEs), i.e. cis-acting elements, and how these elements are being used to improve recombinant protein production. These elements can help maintain the chromatin environment of the transgene genomic integration locus in a transcriptionally favorable state, which increases the numbers of positive clones and the transgene expression levels. Moreover, the high producing clones tend to be more stable in long-term cultures even in the absence of selection pressure. Therefore, by increasing the probability of isolating a high producing clone, as well as by increasing transcription efficiency and stability, these elements can significantly reduce the time and cost required for producing large quantities of recombinant proteins.
Resumo:
PURPOSE: To investigate the incidence of outer retinal tubulation (ORT) in ranibizumab-treated neovascular age-related macular degeneration patients. METHODS: We included 480 consecutive patients (546 eyes) with neovascular age-related macular degeneration, who were treated with variable-dosing intravitreal ranibizumab, evaluated with spectral domain optical coherence tomography, and followed-up for a minimum period of 6 months. Optical coherence tomographies were evaluated for the first appearance of ORT, precursor signs, and type of underlying lesion. Visual acuity was also recorded. RESULTS: Outer retinal tubulation was observed in 30% of eyes during a mean follow-up period of 26.7 months (SD, 13.5). Kaplan-Meier survival analysis revealed that the ORT incidence (2.5, 17.5, 28.4, and 41.6% at baseline, after 1, 2, and 4 years, respectively) continuously increased, despite visually effective anti-vascular endothelial growth factor treatment. Outer retinal tubulation was associated with a poorer functional benefit. Lower baseline visual acuity was associated with a higher risk of developing ORT. CONCLUSION: Incidence of ORT continuously increases despite visually optimal anti-vascular endothelial growth factor treatment of age-related macular degeneration. Outer retinal tubulation might be considered a prognostic factor for functional outcome and is relevant to avoid overtreatment.
Resumo:
In a classic model of mammalian brain formation, precursors of principal glutamatergic neurons migrate radially along radial glia fibers whereas GABAergic interneuron precursors migrate tangentially. These migration modes have significant implications for brain function. Here we used clonal lineage tracing of active radial glia-like neural stem cells in the adult mouse dentate gyrus and made the surprising discovery that proliferating neuronal precursors of glutamatergic granule neurons exhibit significant tangential migration along blood vessels, followed by limited radial migration. Genetic birthdating and morphological and molecular analyses pinpointed the neuroblast stage as the main developmental window when tangential migration occurs. We also developed a partial "whole-mount" dentate gyrus preparation and observed a dense plexus of capillaries, with which only neuroblasts, among the entire population of progenitors, are directly associated. Together, these results provide insight into neuronal migration in the adult mammalian nervous system.
Resumo:
We report two unrelated patients with a multisystem disease involving liver, eye, immune system, connective tissue, and bone, caused by biallelic mutations in the neuroblastoma amplified sequence (NBAS) gene. Both presented as infants with recurrent episodes triggered by fever with vomiting, dehydration, and elevated transaminases. They had frequent infections, hypogammaglobulinemia, reduced natural killer cells, and the Pelger-Huët anomaly of their granulocytes. Their facial features were similar with a pointed chin and proptosis; loose skin and reduced subcutaneous fat gave them a progeroid appearance. Skeletal features included short stature, slender bones, epiphyseal dysplasia with multiple phalangeal pseudo-epiphyses, and small C1-C2 vertebrae causing cervical instability and myelopathy. Retinal dystrophy and optic atrophy were present in one patient. NBAS is a component of the synthaxin-18 complex and is involved in nonsense-mediated mRNA decay control. Putative loss-of-function mutations in NBAS are already known to cause disease in humans. A specific founder mutation has been associated with short stature, optic nerve atrophy and Pelger-Huët anomaly of granulocytes (SOPH) in the Siberian Yakut population. A more recent report associates NBAS mutations with recurrent acute liver failure in infancy in a group of patients of European descent. Our observations indicate that the phenotypic spectrum of NBAS deficiency is wider than previously known and includes skeletal, hepatic, metabolic, and immunologic aspects. Early recognition of the skeletal phenotype is important for preventive management of cervical instability. © 2015 Wiley Periodicals, Inc.
Resumo:
BIGH3 is a secreted protein, part of the extracellular matrix where it interacts with collagen and integrins on the cell surface. BIGH3 can play opposing roles in cancer, acting as either tumor suppressor or promoter, and its mutations lead to different forms of corneal dystrophy. Although many studies have been carried out, little is known about the physiological role of BIGH3. Using the cre-loxP system, we generated a mouse model with disruption of the Bigh3 genomic locus. Bigh3 silencing did not result in any apparent phenotype modifications, the mice remained viable and fertile. We were able to determine the presence of BIGH3 in the retinal pigment epithelium (RPE). In the absence of BIGH3, a transient decrease in the apoptotic process involved in retina maturation was observed, leading to a transient increase in the INL thickness at P15. This phenomenon was accompanied by an increased activity of the pro-survival ERK pathway.
Resumo:
PURPOSE OF REVIEW: Long-lasting devices releasing steroids have been approved recently for macular edema of various origins. Identification of the retina as a novel mineralo-sensitive tissue also raises new therapeutic options. RECENT FINDINGS: Recently, the over activation of the mineralocorticoid receptor (MR) pathway has been shown to cause fluid accumulation in the retina, choroidal vasodilation, and to promote retinal neovascularization in hypoxic conditions. These findings indicate that MR antagonists could have beneficial effects in the treatment of retinal diseases. Central serous chorioretinopathy is a retinal disease associated with choroidal vasodilation and subretinal fluid that affects mostly men with type A personality and occurrence has been associated with steroid intake. In several independent studies, MR antagonists have shown beneficial effects, significantly reducing subretinal fluid in eyes of chronic central serous chorioretinopathy patients. SUMMARY: The role of MR in retinal disorder is emerging and the potential association with psychological traits is considered. The place of MR antagonists for retinal diseases treatment is discussed.
Resumo:
Upon infection, antigen-specific naive CD8 T cells are activated and differentiate into short-lived effector cells (SLECs) and memory precursor cells (MPECs). The underlying signaling pathways remain largely unresolved. We show that Rictor, the core component of mammalian target of rapamycin complex 2 (mTORC2), regulates SLEC and MPEC commitment. Rictor deficiency favors memory formation and increases IL-2 secretion capacity without dampening effector functions. Moreover, mTORC2-deficient memory T cells mount more potent recall responses. Enhanced memory formation in the absence of mTORC2 was associated with Eomes and Tcf-1 upregulation, repression of T-bet, enhanced mitochondrial spare respiratory capacity, and fatty acid oxidation. This transcriptional and metabolic reprogramming is mainly driven by nuclear stabilization of Foxo1. Silencing of Foxo1 reversed the increased MPEC differentiation and IL-2 production and led to an impaired recall response of Rictor KO memory T cells. Therefore, mTORC2 is a critical regulator of CD8 T cell differentiation and may be an important target for immunotherapy interventions.
Resumo:
Glucose is the most important metabolic substrate of the retina and maintenance of normoglycemia is an essential challenge for diabetic patients. Chronic, exaggerated, glycemic excursions could lead to cardiovascular diseases, nephropathy, neuropathy and retinopathy. We recently showed that hypoglycemia induced retinal cell death in mouse via caspase 3 activation and glutathione (GSH) decrease. Ex vivo experiments in 661W photoreceptor cells confirmed the low-glucose induction of death via superoxide production and activation of caspase 3, which was concomitant with a decrease of GSH content. We evaluate herein retinal gene expression 4 h and 48 h after insulin-induced hypoglycemia. Microarray analysis demonstrated clusters of genes whose expression was modified by hypoglycemia and we discuss the potential implication of those genes in retinal cell death. In addition, we identify by gene set enrichment analysis, three important pathways, including lysosomal function, GSH metabolism and apoptotic pathways. Then we tested the effect of recurrent hypoglycemia (three successive 4h periods of hypoglycemia spaced by 48 h recovery) on retinal cell death. Interestingly, exposure to multiple hypoglycemic events prevented GSH decrease and retinal cell death, or adapted the retina to external stress by restoring GSH level comparable to control situation. We hypothesize that scavenger GSH is a key compound in this apoptotic process, and maintaining "normal" GSH level, as well as a strict glycemic control, represents a therapeutic challenge in order to avoid side effects of diabetes, especially diabetic retinopathy.
Resumo:
New genes contribute substantially to adaptive evolutionary innovation, but the functional evolution of new mammalian genes has been little explored at a broad scale. Previous work established mRNA-derived gene duplicates, known as retrocopies, as models for the study of new gene origination. Here we combine mammalian transcriptomic and epigenomic data to unveil the processes underlying the evolution of stripped-down retrocopies into complex new genes. We show that although some robustly expressed retrocopies are transcribed from preexisting promoters, most evolved new promoters from scratch or recruited proto-promoters in their genomic vicinity. In particular, many retrocopy promoters emerged from ancestral enhancers (or bivalent regulatory elements) or are located in CpG islands not associated with other genes. We detected 88-280 selectively preserved retrocopies per mammalian species, illustrating that these mechanisms facilitated the birth of many functional retrogenes during mammalian evolution. The regulatory evolution of originally monoexonic retrocopies was frequently accompanied by exon gain, which facilitated co-option of distant promoters and allowed expression of alternative isoforms. While young retrogenes are often initially expressed in the testis, increased regulatory and structural complexities allowed retrogenes to functionally diversify and evolve somatic organ functions, sometimes as complex as those of their parents. Thus, some retrogenes evolved the capacity to temporarily substitute for their parents during the process of male meiotic X inactivation, while others rendered parental functions superfluous, allowing for parental gene loss. Overall, our reconstruction of the "life history" of mammalian retrogenes highlights retroposition as a general model for understanding new gene birth and functional evolution.