175 resultados para Computer algorithms


Relevância:

20.00% 20.00%

Publicador:

Resumo:

In recent years, Business Model Canvas design has evolved from being a paper-based activity to one that involves the use of dedicated computer-aided business model design tools. We propose a set of guidelines to help design more coherent business models. When combined with functionalities offered by CAD tools, they show great potential to improve business model design as an ongoing activity. However, in order to create complex solutions, it is necessary to compare basic business model design tasks, using a CAD system over its paper-based counterpart. To this end, we carried out an experiment to measure user perceptions of both solutions. Performance was evaluated by applying our guidelines to both solutions and then carrying out a comparison of business model designs. Although CAD did not outperform paper-based design, the results are very encouraging for the future of computer-aided business model design.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The variability observed in drug exposure has a direct impact on the overall response to drug. The largest part of variability between dose and drug response resides in the pharmacokinetic phase, i.e. in the dose-concentration relationship. Among possibilities offered to clinicians, Therapeutic Drug Monitoring (TDM; Monitoring of drug concentration measurements) is one of the useful tool to guide pharmacotherapy. TDM aims at optimizing treatments by individualizing dosage regimens based on blood drug concentration measurement. Bayesian calculations, relying on population pharmacokinetic approach, currently represent the gold standard TDM strategy. However, it requires expertise and computational assistance, thus limiting its large implementation in routine patient care. The overall objective of this thesis was to implement robust tools to provide Bayesian TDM to clinician in modern routine patient care. To that endeavour, aims were (i) to elaborate an efficient and ergonomic computer tool for Bayesian TDM: EzeCHieL (ii) to provide algorithms for drug concentration Bayesian forecasting and software validation, relying on population pharmacokinetics (iii) to address some relevant issues encountered in clinical practice with a focus on neonates and drug adherence. First, the current stage of the existing software was reviewed and allows establishing specifications for the development of EzeCHieL. Then, in close collaboration with software engineers a fully integrated software, EzeCHieL, has been elaborated. EzeCHieL provides population-based predictions and Bayesian forecasting and an easy-to-use interface. It enables to assess the expectedness of an observed concentration in a patient compared to the whole population (via percentiles), to assess the suitability of the predicted concentration relative to the targeted concentration and to provide dosing adjustment. It allows thus a priori and a posteriori Bayesian drug dosing individualization. Implementation of Bayesian methods requires drug disposition characterisation and variability quantification trough population approach. Population pharmacokinetic analyses have been performed and Bayesian estimators have been provided for candidate drugs in population of interest: anti-infectious drugs administered to neonates (gentamicin and imipenem). Developed models were implemented in EzeCHieL and also served as validation tool in comparing EzeCHieL concentration predictions against predictions from the reference software (NONMEM®). Models used need to be adequate and reliable. For instance, extrapolation is not possible from adults or children to neonates. Therefore, this work proposes models for neonates based on the developmental pharmacokinetics concept. Patients' adherence is also an important concern for drug models development and for a successful outcome of the pharmacotherapy. A last study attempts to assess impact of routine patient adherence measurement on models definition and TDM interpretation. In conclusion, our results offer solutions to assist clinicians in interpreting blood drug concentrations and to improve the appropriateness of drug dosing in routine clinical practice.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND: HIV surveillance requires monitoring of new HIV diagnoses and differentiation of incident and older infections. In 2008, Switzerland implemented a system for monitoring incident HIV infections based on the results of a line immunoassay (Inno-Lia) mandatorily conducted for HIV confirmation and type differentiation (HIV-1, HIV-2) of all newly diagnosed patients. Based on this system, we assessed the proportion of incident HIV infection among newly diagnosed cases in Switzerland during 2008-2013. METHODS AND RESULTS: Inno-Lia antibody reaction patterns recorded in anonymous HIV notifications to the federal health authority were classified by 10 published algorithms into incident (up to 12 months) or older infections. Utilizing these data, annual incident infection estimates were obtained in two ways, (i) based on the diagnostic performance of the algorithms and utilizing the relationship 'incident = true incident + false incident', (ii) based on the window-periods of the algorithms and utilizing the relationship 'Prevalence = Incidence x Duration'. From 2008-2013, 3'851 HIV notifications were received. Adult HIV-1 infections amounted to 3'809 cases, and 3'636 of them (95.5%) contained Inno-Lia data. Incident infection totals calculated were similar for the performance- and window-based methods, amounting on average to 1'755 (95% confidence interval, 1588-1923) and 1'790 cases (95% CI, 1679-1900), respectively. More than half of these were among men who had sex with men. Both methods showed a continuous decline of annual incident infections 2008-2013, totaling -59.5% and -50.2%, respectively. The decline of incident infections continued even in 2012, when a 15% increase in HIV notifications had been observed. This increase was entirely due to older infections. Overall declines 2008-2013 were of similar extent among the major transmission groups. CONCLUSIONS: Inno-Lia based incident HIV-1 infection surveillance proved useful and reliable. It represents a free, additional public health benefit of the use of this relatively costly test for HIV confirmation and type differentiation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND: Lung clearance index (LCI), a marker of ventilation inhomogeneity, is elevated early in children with cystic fibrosis (CF). However, in infants with CF, LCI values are found to be normal, although structural lung abnormalities are often detectable. We hypothesized that this discrepancy is due to inadequate algorithms of the available software package. AIM: Our aim was to challenge the validity of these software algorithms. METHODS: We compared multiple breath washout (MBW) results of current software algorithms (automatic modus) to refined algorithms (manual modus) in 17 asymptomatic infants with CF, and 24 matched healthy term-born infants. The main difference between these two analysis methods lies in the calculation of the molar mass differences that the system uses to define the completion of the measurement. RESULTS: In infants with CF the refined manual modus revealed clearly elevated LCI above 9 in 8 out of 35 measurements (23%), all showing LCI values below 8.3 using the automatic modus (paired t-test comparing the means, P < 0.001). Healthy infants showed normal LCI values using both analysis methods (n = 47, paired t-test, P = 0.79). The most relevant reason for false normal LCI values in infants with CF using the automatic modus was the incorrect recognition of the end-of-test too early during the washout. CONCLUSION: We recommend the use of the manual modus for the analysis of MBW outcomes in infants in order to obtain more accurate results. This will allow appropriate use of infant lung function results for clinical and scientific purposes. Pediatr Pulmonol. 2015; 50:970-977. © 2015 Wiley Periodicals, Inc.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

PURPOSE: To improve coronary magnetic resonance angiography (MRA) by combining a two-dimensional (2D) spatially selective radiofrequency (RF) pulse with a T2 -preparation module ("2D-T2 -Prep"). METHODS: An adiabatic T2 -Prep was modified so that the first and last pulses were of differing spatial selectivity. The first RF pulse was replaced by a 2D pulse, such that a pencil-beam volume is excited. The last RF pulse remains nonselective, thus restoring the T2 -prepared pencil-beam, while tipping the (formerly longitudinal) magnetization outside of the pencil-beam into the transverse plane, where it is then spoiled. Thus, only a cylinder of T2 -prepared tissue remains for imaging. Numerical simulations were followed by phantom validation and in vivo coronary MRA, where the technique was quantitatively evaluated. Reduced field-of-view (rFoV) images were similarly studied. RESULTS: In vivo, full field-of-view 2D-T2 -Prep significantly improved vessel sharpness as compared to conventional T2 -Prep, without adversely affecting signal-to-noise (SNR) or contrast-to-noise ratios (CNR). It also reduced respiratory motion artifacts. In rFoV images, the SNR, CNR, and vessel sharpness decreased, although scan time reduction was 60%. CONCLUSION: When compared with conventional T2 -Prep, the 2D-T2 -Prep improves vessel sharpness and decreases respiratory ghosting while preserving both SNR and CNR. It may also acquire rFoV images for accelerated data acquisition.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Following their detection and seizure by police and border guard authorities, false identity and travel documents are usually scanned, producing digital images. This research investigates the potential of these images to classify false identity documents, highlight links between documents produced by a same modus operandi or same source, and thus support forensic intelligence efforts. Inspired by previous research work about digital images of Ecstasy tablets, a systematic and complete method has been developed to acquire, collect, process and compare images of false identity documents. This first part of the article highlights the critical steps of the method and the development of a prototype that processes regions of interest extracted from images. Acquisition conditions have been fine-tuned in order to optimise reproducibility and comparability of images. Different filters and comparison metrics have been evaluated and the performance of the method has been assessed using two calibration and validation sets of documents, made up of 101 Italian driving licenses and 96 Portuguese passports seized in Switzerland, among which some were known to come from common sources. Results indicate that the use of Hue and Edge filters or their combination to extract profiles from images, and then the comparison of profiles with a Canberra distance-based metric provides the most accurate classification of documents. The method appears also to be quick, efficient and inexpensive. It can be easily operated from remote locations and shared amongst different organisations, which makes it very convenient for future operational applications. The method could serve as a first fast triage method that may help target more resource-intensive profiling methods (based on a visual, physical or chemical examination of documents for instance). Its contribution to forensic intelligence and its application to several sets of false identity documents seized by police and border guards will be developed in a forthcoming article (part II).