181 resultados para College Major
Resumo:
The MHC (major histocompatibility complex) is a group of genes that play a crucial role in immune recognition and in tolerance of tissue grafting. The MHC has also been found to influence body odors, body odor preferences, and mate choice in mice and humans. Here we test whether verbal descriptions of human body odors can be linked to the MHC. We asked 45 male students to live as odor neutral as possible for two consecutive days and to wear a T-shirt during the nights. The odors of these T-shirts were then described by five evaluators: two professional perfumers and three laymen. One of the perfumers was able to describe the T-shirt odors in such a way that some of the allelic specificity of the MHC was significantly revealed (after Bonferroni correction for multiple testing). This shows that, although difficult, some people are able to describe MHCcorrelated body odor components.
Resumo:
The recruitment of dendritic cells to sites of infections and their migration to lymph nodes is fundamental for antigen processing and presentation to T cells. In the present study, we showed that antibody blockade of junctional adhesion molecule C (JAM-C) on endothelial cells removed JAM-C away from junctions and increased vascular permeability after L. major infection. This has multiple consequences on the output of the immune response. In resistant C57BL/6 and susceptible BALB/c mice, we found higher numbers of innate immune cells migrating from blood to the site of infection. The subsequent migration of dendritic cells (DCs) from the skin to the draining lymph node was also improved, thereby boosting the induction of the adaptive immune response. In C57BL/6 mice, JAM-C blockade after L. major injection led to an enhanced IFN-γ dominated T helper 1 (Th1) response with reduced skin lesions and parasite burden. Conversely, anti JAM-C treatment increased the IL-4-driven T helper 2 (Th2) response in BALB/c mice with disease exacerbation. Overall, our results show that JAM-C blockade can finely-tune the innate cell migration and accelerate the consequent immune response to L. major without changing the type of the T helper cell response.
Resumo:
Suicidal behavior is commonly associated with depression. Twin studies indicate that both suicidality and major depressive disorder (MDD) are heritable. However, epidemiological evidence suggests that the inheritance of suicidality is likely to be independent of the underlying psychiatric disorder, implying a distinct genetic contribution to suicidality. We conducted a genomewide linkage search aiming to detect genomic loci that may harbor susceptibility genes contributing to risk for suicidality in recurrent MDD. Affected sibling pair (ASP) variance components analysis was performed using the Depression Network cohort of 971 ASPs. The quantitative trait measuring suicidality as a broad phenotype, encompassing ideation and suicide attempts, was established from Schedules for Clinical Assessment in Neuropsychiatry interview items. We examined 1,060 genotyped microsatellite markers with an average spacing of 3.3 cM. Empirical thresholds for linkage evidence were set by whole-genome simulations (LOD = 2.71 for genomewide significance, 1.71 for suggestive linkage). No genomewide significant findings were found. Marker D3S1234 on 3p14 achieved suggestive linkage and yielded a maximum LOD of 1.853 (P = 0.0017), loci 9p24.3 and 18q22-q23 achieved LOD scores >1.5. We found some support for linkage to 2p12 (LOD = 1.2, P = 0.0087) which was previously implicated in linkage studies of suicidality. Our follow-up meta-analysis of five studies showed strong linkage to this region (P = 2 × 10(-6) ). In conclusion, this study analyzed suicidality as a continuous trait in MDD. We found modest evidence for linkage on 3p14. Our meta-analysis supports previous evidence of linkage to suicidality on 2p12. Some candidate genes in these regions may plausibly be implicated in suicidality.
Resumo:
Switzerland, the country with the highest health expenditure per capita, is lacking data on trauma care and system planning. Recently, 12 trauma centres were designated to be reassessed through a future national trauma registry by 2015. Lausanne University Hospital launched the first Swiss trauma registry in 2008, which contains the largest database on trauma activity nationwide. METHODS: Prospective analysis of data from consecutively admitted shock room patients from 1 January 2008 to 31 December 2012. Shock room admission is based on physiology and mechanism of injury, assessed by prehospital physicians. Management follows a surgeon-led multidisciplinary approach. Injuries are coded by Association for the Advancement of Automotive Medicine (AAAM) certified coders. RESULTS: Over the 5 years, 1,599 trauma patients were admitted, predominantly males with a median age of 41.4 years and median injury severity score (ISS) of 13. Rate of ISS >15 was 42%. Principal mechanisms of injury were road traffic (40.4%) and falls (34.4%), with 91.5% blunt trauma. Principal patterns were brain (64.4%), chest (59.8%) and extremity/pelvic girdle (52.9%) injuries. Severe (abbreviated injury scale [AIS] score ≥ 3) orthopaedic injuries, defined as extremity and spine injuries together, accounted for 67.1%. Overall, 29.1% underwent immediate intervention, mainly by orthopaedics (27.3%), neurosurgeons (26.3 %) and visceral surgeons (13.9%); 43.8% underwent a surgical intervention within the first 24 hours and 59.1% during their hospitalisation. In-hospital mortality for patients with ISS >15 was 26.2%. CONCLUSION: This is the first 5-year report on trauma in Switzerland. Trauma workload was similar to other European countries. Despite high levels of healthcare, mortality exceeds published rates by >50%. Regardless of the importance of a multidisciplinary approach, trauma remains a surgical disease and needs dedicated surgical resources.
Resumo:
A 6008 base pair fragment of the vaccinia virus DNA containing the gene for the precursor of the major core protein 4 a, which has been designated P4 a, was sequenced. A long open reading frame (ORF) encoding a protein of molecular weight 102,157 started close to the position where the P4 a mRNA had been mapped. Analysis of the mRNA by S1 nuclease mapping and primer extension indicated that the 5' end defined by the former method is not the true 5' end. This suggests that the P4 a coding region is preceded by leader sequences that are not derived from the immediate vicinity of the gene, similar to what has been reported for another late vaccinia virus mRNA. The sequenced DNA contained several further ORFs on the same, or opposite DNA strand, providing further evidence for the close spacing of protein-coding sequences in the viral genome.
Resumo:
BACKGROUND: The risk of falls is the most commonly cited reason for not providing oral anticoagulation, although the risk of bleeding associated with falls on oral anticoagulants is still debated. We aimed to evaluate whether patients on oral anticoagulation with high falls risk have an increased risk of major bleeding. METHODS: We prospectively studied consecutive adult medical patients who were discharged on oral anticoagulants. The outcome was the time to a first major bleed within a 12-month follow-up period adjusted for age, sex, alcohol abuse, number of drugs, concomitant treatment with antiplatelet agents, and history of stroke or transient ischemic attack. RESULTS: Among the 515 enrolled patients, 35 patients had a first major bleed during follow-up (incidence rate: 7.5 per 100 patient-years). Overall, 308 patients (59.8%) were at high risk of falls, and these patients had a nonsignificantly higher crude incidence rate of major bleeding than patients at low risk of falls (8.0 vs 6.8 per 100 patient-years, P=.64). In multivariate analysis, a high falls risk was not statistically significantly associated with the risk of a major bleed (hazard ratio 1.09; 95% confidence interval, 0.54-2.21). Overall, only 3 major bleeds occurred directly after a fall (incidence rate: 0.6 per 100 patient-years). CONCLUSIONS: In this prospective cohort, patients on oral anticoagulants at high risk of falls did not have a significantly increased risk of major bleeds. These findings suggest that being at risk of falls is not a valid reason to avoid oral anticoagulants in medical patients.
Resumo:
Elevated low-density lipoprotein (LDL) levels induce activation of the p38 mitogen-activated protein kinase (MAPK), a stress-activated protein kinase potentially participating in the development of atherosclerosis. The nature of the lipoprotein components inducing p38 MAPK activation has remained unclear however. We show here that both LDLs and high-density lipoproteins (HDLs) have the ability to stimulate the p38 MAPKs with potencies that correlate with their cholesterol content. Cholesterol solubilized in methyl-beta-cyclodextrin was sufficient to activate the p38 MAPK pathway. Liposomes made of phosphatidylcholine (PC) or sphingomyelin, the two main phospholipids found in lipoproteins, were unable to stimulate the p38 MAPKs. In contrast, PC liposomes loaded with cholesterol potently activated this pathway. Reducing the cholesterol content of LDL particles lowered their ability to activate the p38 MAPKs. Cell lines representative of the three main cell types found in blood vessels (endothelial cells, smooth muscle cells and fibroblasts) all activated their p38 MAPK pathway in response to LDLs or cholesterol-loaded PC liposomes. These results indicate that elevated cholesterol content in lipoproteins, as seen in hypercholesterolemia, favors the activation of the stress-activated p38 MAPK pathway in cells from the vessel wall, an event that might contribute to the development of atherosclerosis.
Online teaching of inflammatory skin pathology by a French-speaking international university network
Resumo:
Introduction: Developments in technology, webbased teaching and whole slide imaging have broadened the teaching horizon in anatomic pathology. Creating online learning material including many types of media like radiologic images, videos, clinical and macroscopic photographs and whole slides imaging is now accessible to almost every university. Unfortunately, a major limiting factor to maintain and update the learning material is the amount of work, time and resources needed. In this perspective, a French national university network was initiated in 2011 to build mutualised online teaching pathology modules with clinical cases and tests. This network has been extended to an international level in 2012-2014 (Quebec, Switzerland and Ivory Coast). Method: One of the first steps of the international project was to build a learning module on inflammatory skin pathology intended for interns and residents of pathology and dermatology. A pathology resident from Quebec spent 6 weeks in France and Switzerland to develop the contents and build the module on an e-learning Moodle platform (http: //moodle.sorbonne-paris-cite.fr) under the supervision of two dermatopathologists (BV, MB). The learning module contains text, interactive clinical cases, tests with feedback, whole slides images (WSI), images and clinical photographs. For that module, the virtual slides are decentralized in 2 universities (Bordeaux and Paris 7). Each university is responsible of its own slide scanning, image storage and online display with virtual slide viewers. Results: The module on inflammatory skin pathology includes more than 50 web pages with French original content, tests and clinical cases, links to over 45 WSI and more than 50 micro and clinical photographs. The whole learning module is currently being revised by four dermatopathologists and two senior pathologists. It will be accessible to interns and residents in spring 2014. The experience and knowledge gained from that work will be transferred to the next international fellowship intern whose work will be aimed at creating lung and breast pathology learning modules. Conclusion: The challenges of sustaining a project of this scope are numerous. The technical aspect of whole-slide imaging and storage needs to be developed by each university or group. The content needs to be regularly updated, completed and its use and existence needs to be promoted by the different actors in pathology. Of the great benefits of that kind of project are the international partnerships and connections that have been established between numerous Frenchspeaking universities and pathologists with the common goals of promoting education in pathology and the use of technology including whole slide imaging. * The Moodle website is hosted by PRES Sorbonne Paris Cité, and financial supports for hardware have been obtained from UNF3S (http://www.unf3s.org/) and PRES Sorbonne Paris Cité. Financial support for international fellowships has been obtained from CFQCU (http://www.cfqcu.org/).
Resumo:
We previously reported that glucose can be released from GLUT2-null hepatocytes through a membrane traffic-based pathway issued from the endoplasmic reticulum. Here, we further characterized this glucose release mechanism using biosynthetic labeling protocols. In continuous pulse-labeling experiments, we determined that glucose secretion proceeded linearly and with the same kinetics in control and GLUT2-null hepatocytes. In GLUT2-deficient hepatocytes, however, a fraction of newly synthesized glucose accumulated intracellularly. The linear accumulation of glucose in the medium was inhibited in mutant, but not in control, hepatocytes by progesterone and low temperature, as previously reported, but, importantly, also by microtubule disruption. The intracellular pool of glucose was shown to be present in the cytosol, and, in pulse-chase experiments, it was shown to be released at a relatively slow rate. Release was not inhibited by S-4048 (an inhibitor of glucose-6-phosphate translocase), cytochalasin B, or progesterone. It was inhibited by phloretin, carbonyl cyanide p-(trifluoromethoxy)phenylhydrazone, and low temperature. We conclude that the major release pathway segregates glucose away from the cytosol by use of a membrane traffic-based, microtubule-dependent mechanism and that the release of the cytosolic pool of newly synthesized glucose, through an as yet unidentified plasma membrane transport system, cannot account for the bulk of glucose release.
Resumo:
It is well established that interactions between CD4(+) T cells and major histocompatibility complex class II (MHCII) positive antigen-presenting cells (APCs) of hematopoietic origin play key roles in both the maintenance of tolerance and the initiation and development of autoimmune and inflammatory disorders. In sharp contrast, despite nearly three decades of intensive research, the functional relevance of MHCII expression by non-hematopoietic tissue-resident cells has remained obscure. The widespread assumption that MHCII expression by non-hematopoietic APCs has an impact on autoimmune and inflammatory diseases has in most instances neither been confirmed nor excluded by indisputable in vivo data. Here we review and put into perspective conflicting in vitro and in vivo results on the putative impact of MHCII expression by non-hematopoietic APCs-in both target organs and secondary lymphoid tissues-on the initiation and development of representative autoimmune and inflammatory disorders. Emphasis will be placed on the lacunar status of our knowledge in this field. We also discuss new mouse models-developed on the basis of our understanding of the molecular mechanisms that regulate MHCII expression-that constitute valuable tools for filling the severe gaps in our knowledge on the functions of non-hematopoietic APCs in inflammatory conditions.
Resumo:
Postoperative care of major neurosurgical procedures is aimed at the prevention, detection and treatment of secondary brain injury. This consists of a series of pathological events (i.e. brain edema and intracranial hypertension, cerebral hypoxia/ischemia, brain energy dysfunction, non-convulsive seizures) that occur early after the initial insult and surgical intervention and may add further burden to primary brain injury and thus impact functional recovery. Management of secondary brain injury requires specialized neuroscience intensive care units (ICU) and continuous advanced monitoring of brain physiology. Monitoring of intracranial pressure (ICP) is a mainstay of care and is recommended by international guidelines. However, ICP monitoring alone may be insufficient to detect all episodes of secondary brain insults. Additional invasive (i.e. brain tissue PO2, cerebral microdialysis, regional cerebral blood flow) and non-invasive (i.e. transcranial doppler, near-infrared spectroscopy, EEG) brain monitoring devices might complement ICP monitoring and help clinicians to target therapeutic interventions (e.g. management of cerebral perfusion pressure, blood transfusion, glucose control) to patient-specific pathophysiology. Several independent studies demonstrate such multimodal approach may optimize patient care after major neurosurgical procedures. The aim of this review is to evaluate some of the available monitoring systems and summarize recent important data showing the clinical utility of multimodal neuromonitoring for the management of main acute neurosurgical conditions, including traumatic brain injury, subarachnoid hemorrhage and stroke.
Resumo:
If the importance of triiodothyronine (T3) on brain development including myelinogenesis has long been recognized, its mechanism of action at the gene level is still not fully elucidated. We studied the effect of T3 on the expression of myelin protein genes in aggregating brain cell cultures. T3 increases the concentrations of mRNA transcribed from the following four myelin protein genes: myelin basic protein (Mbp), myelin-associated glycoprotein (Mag), proteolipid protein (Plp), and 2',3'-cyclic nucleotide 3'-phosphodiesterase (Cnp). T3 is not only a triggering signal for oligodendrocyte differentiation, but it has continuous stimulatory effects on myelin gene expression. Transcription in isolated nuclei experiments shows that T3 increases Mag and Cnp transcription rates. After inhibiting transcription with actinomycin D, we measured the half-lives of specific mRNAs. Our results show that T3 increases the stability of mRNA for myelin basic protein, and probably proteolipid protein. In vitro translation followed by myelin basic protein-specific immunoprecipitation showed a direct stimulatory effect of T3 on myelin basic protein mRNA translation. Moreover, this stimulation was higher when the mRNA was already stabilized in culture, indicating that stabilization is achieved through mRNA structural modifications. These results demonstrate the diverse and multiple mechanisms of T3 stimulation of myelin protein genes.
Resumo:
Previous results have documented a burst of IL-4 mRNA that peaks in draining lymph nodes of susceptible BALB/c mice 16 h after infection with Leishmania major. The importance of this early IL-4 response in subsequent Th2 cell maturation is supported by observations showing that 1) neutralization of IL-4 at the initiation of infection or 2) administration of IL-12, which results in an inhibition of the 16 h IL-4 mRNA burst, inhibits Th2 cell development. However, both treatments are effective in hampering Th2 cell development only if given at a time when IL-4 has been produced for <48 h. At this time after infection, lymph node CD4+ T cells from BALB/c mice no longer respond to IL-12. This IL-12 unresponsiveness is prevented in mice treated with anti-IL-4 Abs at the initiation of infection. Finally, the inhibition of Th2 development in BALB/c mice treated with anti-IL-4 Abs at the onset of infection results from maintenance of IL-12 responsiveness, since it requires IL-12. Together, these results reveal a narrow window of time, between 16 h and <48 h after infection, during which IL-4 produced rapidly in BALB/c mice renders T cells unresponsive to IL-12, allowing their differentiation toward the Th2 phenotype.