313 resultados para Channel patterns
Resumo:
BACKGROUND: An association between alcohol consumption and injury is clearly established from volume of drinking, heavy episodic drinking (HED), and consumption before injury. Little is known, however, about how their interaction raises risk of injury and what combination of factors carries the highest risk. This study explores which of 11 specified groups of drinkers (a) are at high risk and (b) contribute most to alcohol-attributable injuries. METHODS: In all, 8,736 patients, of whom 5,077 were injured, admitted to the surgical ward of the emergency department of Lausanne University Hospital between January 1, 2003, and June 30, 2004, were screened for alcohol use. Eleven groups were constructed on the basis of usual patterns of intake and preattendance drinking. Odds ratios (ORs) comparing injured and noninjured were derived, and alcohol-attributable fractions of injuries were calculated from ORs and prevalence of exposure groups. RESULTS: Risk of injury increased with volume of drinking, HED, and preattendance drinking. For both sexes, the highest risk was associated with low intake, HED, and 4 (women), 5 (men), or more drinks before injury. At the same level of preattendance drinking, high-volume drinkers were at lower risk than low-volume drinkers. In women, the group of low-risk non-HED drinkers taking fewer than 4 drinks suffered 47.5% of the alcohol-attributable injuries in contrast to only 20.4% for men. Low-volume male drinkers with HED had more alcohol-attributable injuries than that of low-volume female drinkers with HED (46.9% vs 23.2%). CONCLUSIONS: Although all groups of drinkers are at increased risk of alcohol-related injury, those who usually drink little but on occasion heavily are at particular risk. The lower risk of chronic heavy drinkers may be due to higher tolerance of alcohol. Prevention should thus target heavy-drinking occasions. Low-volume drinking women without HED and with only little preattendance drinking experienced a high proportion of injuries; such women would be well advised to drink very little or to take other special precautions in risky circumstances.
Resumo:
The evolution of ants is marked by remarkable adaptations that allowed the development of very complex social systems. To identify how ant-specific adaptations are associated with patterns of molecular evolution, we searched for signs of positive selection on amino-acid changes in proteins. We identified 24 functional categories of genes which were enriched for positively selected genes in the ant lineage. We also reanalyzed genome-wide data sets in bees and flies with the same methodology to check whether positive selection was specific to ants or also present in other insects. Notably, genes implicated in immunity were enriched for positively selected genes in the three lineages, ruling out the hypothesis that the evolution of hygienic behaviors in social insects caused a major relaxation of selective pressure on immune genes. Our scan also indicated that genes implicated in neurogenesis and olfaction started to undergo increased positive selection before the evolution of sociality in Hymenoptera. Finally, the comparison between these three lineages allowed us to pinpoint molecular evolution patterns that were specific to the ant lineage. In particular, there was ant-specific recurrent positive selection on genes with mitochondrial functions, suggesting that mitochondrial activity was improved during the evolution of this lineage. This might have been an important step toward the evolution of extreme lifespan that is a hallmark of ants.
Resumo:
The amiloride-sensitive epithelial Na channel (ENaC) is a heteromultimeric channel made of three alpha beta gamma subunits. The structures involved in the ion permeation pathway have only been partially identified, and the respective contributions of each subunit in the formation of the conduction pore has not yet been established. Using a site-directed mutagenesis approach, we have identified in a short segment preceding the second membrane-spanning domain (the pre-M2 segment) amino acid residues involved in ion permeation and critical for channel block by amiloride. Cys substitutions of Gly residues in beta and gamma subunits at position beta G525 and gamma G537 increased the apparent inhibitory constant (Ki) for amiloride by > 1,000-fold and decreased channel unitary current without affecting ion selectivity. The corresponding mutation S583 to C in the alpha subunit increased amiloride Ki by 20-fold, without changing channel conducting properties. Coexpression of these mutated alpha beta gamma subunits resulted in a non-conducting channel expressed at the cell surface. Finally, these Cys substitutions increased channel affinity for block by external Zn2+ ions, in particular the alpha S583C mutant showing a Ki for Zn2+ of 29 microM. Mutations of residues alpha W582L, or beta G522D also increased amiloride Ki, the later mutation generating a Ca2+ blocking site located 15% within the membrane electric field. These experiments provide strong evidence that alpha beta gamma ENaCs are pore-forming subunits involved in ion permeation through the channel. The pre-M2 segment of alpha beta gamma subunits may form a pore loop structure at the extracellular face of the channel, where amiloride binds within the channel lumen. We propose that amiloride interacts with Na+ ions at an external Na+ binding site preventing ion permeation through the channel pore.
Resumo:
BACKGROUND: Dysregulation of voltage-gated sodium channels (Na(v)s) is believed to play a major role in nerve fiber hyperexcitability associated with neuropathic pain. A complete transcriptional characterization of the different isoforms of Na(v)s under normal and pathological conditions had never been performed on mice, despite their widespread use in pain research. Na(v)s mRNA levels in mouse dorsal root ganglia (DRG) were studied in the spared nerve injury (SNI) and spinal nerve ligation (SNL) models of neuropathic pain. In the SNI model, injured and non-injured neurons were intermingled in lumbar DRG, which were pooled to increase the tissue available for experiments. RESULTS: A strong downregulation was observed for every Na(v)s isoform expressed except for Na(v)1.2; even Na(v)1.3, known to be upregulated in rat neuropathic pain models, was lower in the SNI mouse model. This suggests differences between these two species. In the SNL model, where the cell bodies of injured and non-injured fibers are anatomically separated between different DRG, most Na(v)s were observed to be downregulated in the L5 DRG receiving axotomized fibers. Transcription was then investigated independently in the L3, L4 and L5 DRG in the SNI model, and an important downregulation of many Na(v)s isoforms was observed in the L3 DRG, suggesting the presence of numerous injured neurons there after SNI. Consequently, the proportion of axotomized neurons in the L3, L4 and L5 DRG after SNI was characterized by studying the expression of activating transcription factor 3 (ATF3). Using this marker of nerve injury confirmed that most injured fibers find their cell bodies in the L3 and L4 DRG after SNI in C57BL/6 J mice; this contrasts with their L4 and L5 DRG localization in rats. The spared sural nerve, through which pain hypersensitivity is measured in behavioral studies, mostly projects into the L4 and L5 DRG. CONCLUSIONS: The complex regulation of Na(v)s, together with the anatomical rostral shift of the DRG harboring injured fibers in C57BL/6 J mice, emphasize that caution is necessary and preliminary anatomical experiments should be carried out for gene and protein expression studies after SNI in mouse strains.
Resumo:
BACKGROUND: In high-income countries, high socioeconomic status (SES) is generally associated with a healthier diet, but whether social differences in dietary intake are also present in low- and middle-income countries (LMICs) remains to be established. OBJECTIVE: We performed a systematic review of studies that assessed the relation between SES and dietary intake in LMICs. DESIGN: We carried out a systematic review of cohort and cross-sectional studies in adults in LMICs and published between 1996 and 2013. We assessed associations between markers of SES or urban and rural settings and dietary intake. RESULTS: A total of 33 studies from 17 LMICs were included (5 low-income countries and 12 middle-income countries; 31 cross-sectional and 2 longitudinal studies). A majority of studies were conducted in Brazil (8), China (6), and Iran (4). High SES or living in urban areas was associated with higher intakes of calories; protein; total fat; cholesterol; polyunsaturated, saturated, and monounsaturated fatty acids; iron; and vitamins A and C and with lower intakes of carbohydrates and fiber. High SES was also associated with higher fruit and/or vegetable consumption, diet quality, and diversity. Although very few studies were performed in low-income countries, similar patterns were generally observed in both LMICs except for fruit intake, which was lower in urban than in rural areas in low-income countries. CONCLUSIONS: In LMICs, high SES or living in urban areas is associated with overall healthier dietary patterns. However, it is also related to higher energy, cholesterol, and saturated fat intakes. Social inequalities in dietary intake should be considered in the prevention and control of noncommunicable diseases in LMICs.
Resumo:
Regulation of the epithelial Na(+) channel (ENaC) by ubiquitylation is controlled by the activity of two counteracting enzymes, the E3 ubiquitin-protein ligase Nedd4-2 (mouse ortholog of human Nedd4L) and the ubiquitin-specific protease Usp2-45. Previously, Usp2-45 was shown to decrease ubiquitylation and to increase surface function of ENaC in Xenopus laevis oocytes, whereas the splice variant Usp2-69, which has a different N-terminal domain, was inactive toward ENaC. It is shown here that the catalytic core of Usp2 lacking the N-terminal domain has a reduced ability relative to Usp2-45 to enhance ENaC activity in Xenopus oocytes. In contrast, its catalytic activity toward the artificial substrate ubiquitin-AMC is fully maintained. The interaction of Usp2-45 with ENaC exogenously expressed in HEK293 cells was tested by coimmunoprecipitation. The data indicate that different combinations of ENaC subunits, as well as the α-ENaC cytoplasmic N-terminal but not C-terminal domain, coprecipitate with Usp2-45. This interaction is decreased but not abolished when the cytoplasmic ubiquitylation sites of ENaC are mutated. Importantly, coimmunoprecipitation in HEK293 cells and GST pull-down of purified recombinant proteins show that both the catalytic domain and the N-terminal tail of Usp2-45 physically interact with the HECT domain of Nedd4-2. Taken together, the data support the conclusion that Usp2-45 action on ENaC is promoted by various interactions, including through binding to Nedd4-2 that is suggested to position Usp2-45 favorably for ENaC deubiquitylation.
Resumo:
Adult-type rhabdomyosarcoma (RMS) has been classically defined as a pleomorphic sarcoma with desmin expression occurring in adult patients. To reevaluate this entity, we analyzed a series of 57 cases using immunohistochemistry for desmin, myogenin, alpha smooth muscle actin, h-caldesmon, pankeratin AE1/AE3, epithelial membrane antigen (EMA), S100 protein, CD34, MDM2, and CDK4. In this series, there were 36 men and 21 women aged from 22 to 87 years (median: 59). Tumors were mainly located in the lower limbs (27 cases), trunk wall (15 cases), and upper limbs (10 cases). Most tumors were deeply located (51/54) with a size from 1 to 30 cm (median: 8 cm). Cases were classified in 3 histologic categories: spindle cell RMS (25 cases), pleomorphic RMS (16 cases), and mixed type (16 cases). Forty-one tumors were grade 3 and 16 grade 2. Immunohistochemistry showed that every case was positive for desmin and myogenin. Alpha smooth muscle actin was positive in 21%, pankeratin AE1/AE3 in 20%, and CD34 in 13.2%. Treatment modalities and follow-up were available in 46 cases. Median follow-up was 60.9 months. Eight patients developed a local recurrence and 16 a distant metastasis with a 5-year overall survival rate of 52.6% and a 5-year metastasis-free survival of 62.9%. The only predictive factor for metastasis was histologic grade. In conclusion, adult-type RMS is a rare sarcoma occurring mainly in the extremities and trunk wall with 2 main histologic patterns, spindle cell, and pleomorphic patterns, which represent the end of the spectrum of a single entity.
Resumo:
OBJECTIVE: To determine the pattern of extraocular muscle (EOM) paresis in incomplete vasculopathic third nerve palsies (3NP) that have normal pupillary function. METHODS: A retrospective study in a private practice and academic neuro-ophthalmic practice. Patients diagnosed with vasculopathic 3NP within 4 weeks of symptom onset were identified. The chart of each patient was reviewed to determine pupillary function and the pattern and degree of EOM and levator palpebrae paresis at the time of presentation. RESULTS: Of 55 patients with vasculopathic 3NP, 42 (76%) had normal pupillary function. Of these 42, 23 (55%) demonstrated an incomplete EOM palsy, defined as partially reduced ductions affecting all third nerve-innervated EOMs and levator (diffuse pattern) or partially reduced ductions that involved only some third nerve-innervated EOMs and levator (focal pattern). Twenty (87%) of these 23 patients showed a diffuse pattern of paresis; only three (13%) showed a focal pattern of paresis, one that affected only the superior rectus and levator muscles (superior division weakness). CONCLUSIONS: Based on our series, most patients with EOM/levator involvement in pupil-sparing, incomplete 3NP of vasculopathic origin have a diffuse pattern of paresis. In contrast, our review of the literature suggests that pupil-sparing 3NP of aneurysmal origin usually have a focal pattern of paresis. We propose that distinguishing these two patterns of EOM paresis may be helpful in differentiating between vasculopathic and aneurysmal 3NP. Future studies will be needed to confirm the clinical utility of this hypothesis.
Resumo:
The subdivisions of human inferior colliculus are currently based on Golgi and Nissl-stained preparations. We have investigated the distribution of calcium-binding protein immunoreactivity in the human inferior colliculus and found complementary or mutually exclusive localisations of parvalbumin versus calbindin D-28k and calretinin staining. The central nucleus of the inferior colliculus but not the surrounding regions contained parvalbumin-positive neuronal somata and fibres. Calbindin-positive neurons and fibres were concentrated in the dorsal aspect of the central nucleus and in structures surrounding it: the dorsal cortex, the lateral lemniscus, the ventrolateral nucleus, and the intercollicular region. In the dorsal cortex, labelling of calbindin and calretinin revealed four distinct layers.Thus, calcium-binding protein reactivity reveals in the human inferior colliculus distinct neuronal populations that are anatomically segregated. The different calcium-binding protein-defined subdivisions may belong to parallel auditory pathways that were previously demonstrated in non-human primates, and they may constitute a first indication of parallel processing in human subcortical auditory structures.
Resumo:
Cellular directional migration in an electric field (galvanotaxis) is one of the mechanisms guiding cell movement in embryogenesis and in skin epidermal repair. The epithelial sodium channel (ENaC), in addition to its function of regulating sodium transport in kidney, has recently been found to modulate cell locomotory speed. Here we tested whether ENaC has an additional function of mediating the directional migration of galvanotaxis in keratinocytes. Genetic depletion of ENaC completely blocks only galvanotaxis and does not decrease migration speed. Overexpression of ENaC is sufficient to drive galvanotaxis in otherwise unresponsive cells. Pharmacologic blockade or maintenance of the open state of ENaC also decreases or increases, respectively, galvanotaxis, suggesting that the channel open state is responsible for the response. Stable lamellipodial extensions formed at the cathodal sides of wild-type cells at the start of galvanotaxis; these were absent in the ENaC knockout keratinocytes, suggesting that ENaC mediates galvanotaxis by generating stable lamellipodia that steer cell migration. We provide evidence that ENaC is required for directional migration of keratinocytes in an electric field, supporting a role for ENaC in skin wound healing.
Resumo:
Summary : The skin is a complex organ that protects the body against entry of pathogens and supplies a relatively dry and impermeable barrier to water loss. This barrier function is mainly provided by the epidermis, which is the outermost layer of the skin. Serine proteases are involved in skin physiology and it is known that mutations or alterations in their expression can lead to skin diseases. In order to investigate the importance of the regulated expression of CAPI/Prss8, a membrane bound serine protease expressed in the epidermis, we developed transgenic mice ectopically expressing CAPI/Prss8 in the skin. These animals exhibited a phenotype characterized by scaly skin, epidermal hypertrophy, inflammation and scratching behavior. This phenotype could be completely abolished in mice lacking the proteinase activated receptor 2 (PAR2) revealing PAR2 as a potential in vivo downstream target of CAP 1 /Prss8. We could also provide evidence of a CAP1 /Prss8 function independent of its catalytic activity. Additionally, mice ectopically expressing PAR2 in the skin developed a skin phenotype very similar to CAPI/Prss8 transgenic animals, supporting the hypothesis of PAR2 activation by CAPI/Prss8. We could furthermore demonstrate an inhibitory effect of the serine protease inhibitor nexin-I on CAPI/Prss8, since nexin-1 transgenic expression negated the skin phenotype observed in CAPI/Prss8 transgenic mice. CAP1/Prss8 and PAR2 transgenic animals, and the understanding of the interaction between CAPl/Prss8 and PAR2, can be helpful in developing potential CAPI/Prss8 and PAR2 inhibitory molecules that may be used as drugs to treat ichthyoses-like skin diseases. Résumé : La peau est un organe complexe qui protège le corps contre l'entrée des pathogènes et forme une barrière imperméable qui empêche la déshydratation. Cette fonction de barrière est surtout fournie par l'épiderme, la couche la plus superficielle de la peau. Le bon fonctionnement de cet organe est permis, entre autres, par les protéases à sérine qui sont des enzymes dont l'altération peut causer des maladies de la peau. Pour étudier l'importance de la régulation de CAP1/Prss8, une protéase à sérine exprimée au niveau de l'épiderme, des souris génétiquement modifiées, dans lesquelles CAP1/Prss8 est exprimé d'une manière ectopique dans la peau, ont été générées. Les animaux transgéniques pour CAP1/Prss8 présentent une peau squameuse, un épiderme hypertrophique, des processus inflammatoires et se grattent. Ce phénotype a pu être complètement guéri lorsque le gène de PAR2, un récepteur qui règle l'activité des cellules de l'épiderme, est inactivé chez la souris. Ceci montre que PAR2 est une cible de CAP1/Prss8 dans le système étudié. Des études expérimentales suggèrent de plus que l'effet de CAP1/Prss8 dans ce modèle ne dépend pas de son activité enzymatique. En dernière analyse, il a été démontré que l'expression transgénique de nexin-1, un inhibiteur des protéases à sérine exprimé dans la peau, a la capacité d'améliorer la peau squameuse et l'épiderme hypertrophique causés par CAP1/Prss8 transgénique. Les animaux transgéniques pour CAP1/Prss8 et PAR2, et la compréhension du mécanisme d'interaction entre eux, pourraient aider à développer et à tester des molécules inhibitrices de CAP1 /Prss8 et PARI qui pourraient alors être utilisées comme médicaments pour traiter des maladies de la peau comme les ichthyoses.
Resumo:
BACKGROUND: The SCN5A gene encodes for the α-subunit of the cardiac sodium channel NaV1.5, which is responsible for the rapid upstroke of the cardiac action potential. Mutations in this gene may lead to multiple life-threatening disorders of cardiac rhythm or are linked to structural cardiac defects. Here, we characterized a large family with a mutation in SCN5A presenting with an atrioventricular conduction disease and absence of Brugada syndrome. METHOD AND RESULTS: In a large family with a high incidence of sudden cardiac deaths, a heterozygous SCN5A mutation (p.1493delK) with an autosomal dominant inheritance has been identified. Mutation carriers were devoid of any cardiac structural changes. Typical ECG findings were an increased P-wave duration, an AV-block I° and a prolonged QRS duration with an intraventricular conduction delay and no signs for Brugada syndrome. HEK293 cells transfected with 1493delK showed strongly (5-fold) reduced Na(+) currents with altered inactivation kinetics compared to wild-type channels. Immunocytochemical staining demonstrated strongly decreased expression of SCN5A 1493delK in the sarcolemma consistent with an intracellular trafficking defect and thereby a loss-of-function. In addition, SCN5A 1493delK channels that reached cell membrane showed gain-of-function aspects (slowing of the fast inactivation, reduction in the relative fraction of channels that fast inactivate, hastening of the recovery from inactivation). CONCLUSION: In a large family, congregation of a heterozygous SCN5A gene mutation (p.1493delK) predisposes for conduction slowing without evidence for Brugada syndrome due to a predominantly trafficking defect that reduces Na(+) current and depolarization force.
Resumo:
As a result of sex chromosome differentiation from ancestral autosomes, male mammalian cells only contain one X chromosome. It has long been hypothesized that X-linked gene expression levels have become doubled in males to restore the original transcriptional output, and that the resulting X overexpression in females then drove the evolution of X inactivation (XCI). However, this model has never been directly tested and patterns and mechanisms of dosage compensation across different mammals and birds generally remain little understood. Here we trace the evolution of dosage compensation using extensive transcriptome data from males and females representing all major mammalian lineages and birds. Our analyses suggest that the X has become globally upregulated in marsupials, whereas we do not detect a global upregulation of this chromosome in placental mammals. However, we find that a subset of autosomal genes interacting with X-linked genes have become downregulated in placentals upon the emergence of sex chromosomes. Thus, different driving forces may underlie the evolution of XCI and the highly efficient equilibration of X expression levels between the sexes observed for both of these lineages. In the egg-laying monotremes and birds, which have partially homologous sex chromosome systems, partial upregulation of the X (Z in birds) evolved but is largely restricted to the heterogametic sex, which provides an explanation for the partially sex-biased X (Z) expression and lack of global inactivation mechanisms in these lineages. Our findings suggest that dosage reductions imposed by sex chromosome differentiation events in amniotes were resolved in strikingly different ways.
Resumo:
The epithelial Na+ channel ENaC mediates transepithelial Na+ transport in the distal kidney, the colon, and the lung and is a key element for the maintenance of Na+ balance and the regulation of blood pressure. Mutagenesis studies have identified residues alphaS583 and the homologous betaG525 and gammaG537 in the outer pore entrance that are critical for ENaC block by the K+-sparing diuretic amiloride. The aim of the present study was to determine first, whether these residues are part of the amiloride binding site, and second, whether they are general determinants of ENaC block by amiloride and its derivatives. Kinetic analysis of the association and dissociation rates of amiloride and benzamil to ENaC showed that mutation of residue alphaS583C and the homologous betaG525C increased the dissociation rate of the drugs from the binding site, with little changes in their association rate. Thus, these mutations destabilize the binding interaction between the blockers and the receptor on the channel, favoring the unbinding of the ligand. This strongly suggests that they are part of the binding site. Because mutations of alphaS583, betaG525, and gammaG537 have similar effects on amiloride, benzamil, and triamterene block, we conclude that these three ENaC blockers share a common receptor within the ion channel pore.