197 resultados para Cellule Souche


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Abstract : The maintenance of genome stability is a challenge for all living organisms. DNA is regularly subjected to chemical alterations by both endogenous and exogenous DNA damaging agents. If left unrepaired, these lesions will create mutations or lead to chromosomal instability. DNA crosslinking agents probably bring about the most toxic lesions. By linking covalently the two strands of DNA, crosslinking agents will impede essential cellular processes such as replication and transcription. Cells from Fanconi anaemia patients are extremely sensitive to these agents. Fanconi anaemia (FA) is a rare chromosomal instability disorder that leads to developmental defects, pancytopenia and cancer susceptibility. FA is a genetically heterogeneous disease with thirteen complementation groups identified. Proteins encoded by the FA genes work together in the FA pathway. Eight of these proteins form the FA core complex (FANC-A, B, C,E, F, G, L and -M), whose integrity is required to monoubiquitinate FANCD2 and FANCI in response to DNA damage. The hypersensitivity of FA cells to crosslinking agents, which perturb the progression of replication forks, has led to the hypothesis that FA proteins play a crucial role in the response to replication stress. However, at the molecular level, the functions of the FA pathway remain largely unknown. Our efforts were first focused on the characterization of FANCD2, "the key effector of the FA pathway". Using different substrates, we found that in vitro, purified hFANCD2 preferentially binds single strand DNA and double strand DNA extremities. Concomitantly, FANCM was identified as a new component of the FA core complex. Moreover FANCM was shown to have specific branch migration activities and probably a role as a "landing platform" on DNA for the other components of the core complex. By using FANCM mutants carrying deletions within the internal domain, we investigated the role of FANCM as a DNA anchor protein for the core complex. We observed that indeed, a specific part of the internal domain of FANCM interacts with components of the core complex. Finally, in collaboration with Weidong Wang's lab we characterized two new components of the FA pathway: FAAP10 and FAAP16. As a heterodimer these two proteins show affinity for dsDNA, and anneal complementary oligonucleotides in vitro. Moreover these proteins can associate with FANCM via a part of its internal domain. We find that FANCM, FAAP 10 and FAAP 16 can co-exist on the branch point of replication and recombination intermediates, and that FAAP10 and FAAP16 stimulate replication fork reversal by FANCM. These results suggest that FANCM may function as a landing platform for the core complex. After loading on DNA, the core complex can activate FANCD2 through monoubiquitination leading to its recruitment to the site of damage. Since ssDNA and double strand breaks are intermediates that are generated as a consequence of collapsed replication forks, FANCD2 by binding to ds DNA ends and ssDNA could protect such structures from the recombination repair machinery and prevent unscheduled recombination events. Alternatively, FANCD2 could avoid nucleases from gaining access to collapsed forks, preserving the DNA in state that can be used as a starting point for resumption of DNA synthesis. The overall comprehension of the FA pathway is far from been complete. Our results unravel new aspects of Fanconi Anaemia, which hopefully in the near future will address keys questions leading to a better understanding of the fascinating Fanconi Anaemia. Résumé : Le maintien de l'intégrité du génome est fondamentale chez tous les organismes vivants. L'ADN est constamment altéré par des composés aussi bien endogènes qu'exogènes. Si ces altérations ne sont pas réparées, elles peuvent conduire à l'apparition de mutations, ainsi qu'à une instabilité génomique accrue. Les lésions les plus sévères qui peuvent survenir sur l'ADN, sont les pontages inter caténaires. Des agents pontants en liant de façon covalente les deux brins d'ADN, vont empêcher le déroulement normal de processus cellulaires essentiels tels que la réplication ou la transcription. La compréhension des mécanismes permettant à la cellule de tolérer et réparer ces lésions est primordiale, notamment dans le cas des patients atteints de l'anémie de Fanconi qui présentent une très grande sensibilité à ces composés pontants. L'anémie de Fanconi est une maladie génétique rare appartenant à un groupe de pathologies associées à une grande instabilité chromosomique. Les patients atteints de l'anémie de Fanconi présentent des malformations du squelette, une pancytopénie et une forte propension à la survenue de cancer. L'anémie de Fanconi est génétiquement très hétérogène. À ce jour, 13 gènes codant pour 13 protéines FANC différentes ont été identifiés. Huit de ces protéines fonctionnent ensemble au sein d'un complexe (nommé le complexe FANC) ayant pour but de monoubiquitiner FANCD2 et FANCI en réponse à la formation de lésions sur l'ADN. L'extrême sensibilité des cellules de patients atteints de l'anémie de Fanconi à ces agents pontant l'ADN suggère l'implication des protéines FANC dans la réponse cellulaire suite à une stress réplicatif. Cependant, le rôle moléculaire exact de ces protéines demeure encore inconnu. Après purification, nous avons observé que FANCD2 était capable de lier l'ADN simple brin, ainsi que les extrémités d'ADN in vitro. Dans le même temps, FANCM fut identifié comme appartenant au complexe FANC. FANCM est décrit comme une translocase capable de promouvoir le déplacement de point de jonction dans des structures d'ADN spécifiques in vitro. De plus, en se liant à l'ADN, FANCM peut agir comme une plateforme pour les autres protéines FANC, leur permettant ainsi d'être adressées à l'ADN. En créant des protéines FANCM recombinantes ayant des délétions dans le domaine interne, nous avons pu observer que certaines protéines du complexe FANC se fixent à des sites spécifiques sur le domaine interne de FANCM. Enfin, au travers d'une collaboration, nous avons été amenés à caractériser deux nouvelles protéines appartenant au complexe FANC : FAAP 10 et FAAP16. Elles s'associent à FANCM par l'intermédiaire du domaine interne, et forment ainsi un hétérotrimére. La présence de FAAP10 et FAAP16 n'affecte pas la liaison de FANCM à l'ADN, mais semble potentialiser son activité de régression in vitro. FANCM semble donc fonctionner comme une plateforme pour les autres composants du complexe FANC. Ces derniers, une fois liés à l'ADN permettent la monoubiquitination de FANCD2 et son recrutement au site lésé de l'ADN. FANCD2 en se liant de façon préférentielle à l'ADN simple brin et aux extrémités d'ADN qui sont générés lors de l'arrêt et du démantèlement d'une fourche de réplication, pourrait protéger ces même fourches de réplication arrêtées, d'évènements de recombinaison aléatoires. Nos résultats apportent de nouveaux éléments concernant les mécanismes moléculaires de l'anémie de Fanconi. Enfin, l'étude de l'anémie de Fanconi permet aussi de mieux comprendre les mécanismes mis en place par la cellule pour tolérer des lésions survenant lors de la réplication.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Résumé large public Le glucose est une source d'énergie essentielle pour notre organisme, indispensable pour le bon fonctionnement des cellules de notre corps. Les cellules β du pancréas sont chargées de réguler l'utilisation du glucose et de maintenir la glycémie (taux de glucose dans le sang) à un niveau constant. Lorsque la glycémie augmente, ces dernières sécrètent l'insuline, une hormone favorisant l'absorption, l'utilisation et le stockage du glucose. Une sécrétion insuffisante d'insuline provoque une élévation anormale du taux de glucose dans le sang (hyperglycémie) et peut mener au développement du diabète sucré. L'insuline est sécrétée dans le sang par un mécanisme particulier appelé exocytose. Une meilleure compréhension de ce mécanisme est nécessaire dans l'espoir de trouver des nouvelles thérapies pour traiter les 170 millions de personnes atteintes de diabète sucré à travers le monde. L'implication de diverses protéines, comme les SNAREs ou Rabs a déjà été démontrée. Cependant leurs mécanismes d'action restent, à ce jour, peu compris. De plus, l'adaptation de la machinerie d'exocytose à des conditions physiopathologiques, comme l'hyperglycémie, est encore à élucider. Le but de mon travail de thèse a été de clarifier le rôle de deux protéines, Noc2 et Tomosyn, dans l'exocytose ; puis de déterminer les effets d'une exposition prolongée à un taux élevé de glucose sur l'ensemble des protéines de la machinerie d'exocytose. Noc2 est un partenaire potentiel de deux Rabs connues pour leur implication dans les dernières étapes de l'exocytose, Rab3 et Rab27. Grâce à l'étude de différents mutants de Noc2, j'ai montré que l'interaction avec Rab27 permet à la protéine de s'associer avec les organelles de la cellule β contenant l'insuline. De plus, en diminuant sélectivement l'expression de Noc2, j'ai déterminé l'importance de cette protéine pour le bon fonctionnement du processus d'exocytose et le relâchement de l'insuline. Quant à Tomosyn, une protéine interagissant avec les protéines SNAREs, j'ai démontré son importance dans la sécrétion d'insuline en diminuant de manière sélective son expression dans les cellules β. Ensuite, grâce à une combinaison d'approches moléculaires et de microscopie, j'ai mis en évidence le rôle de Tomosyn dans les dernières étapes de l'exocytose. Enfin, puisque la sécrétion d'insuline est diminuée lors d'une hyperglycémie prolongée, j'ai analysé l'adaptation de la machinerie d'exocytose à ces conditions. Ceci m'a permis de découvrir que l'expression de quatre protéines essentielles pour le processus d'exocytose, Noc2, Rab3, Rab27 et Granuphilin, est fortement diminuée lors d'une hyperglycémie chronique. L'ensemble de ces données met en évidence l'importance de Noc2 et Tomosyn dans la sécrétion d'insuline. L'inhibition, par un taux élevé de glucose, de l'expression de Noc2 et d'autres protéines indispensables pour l'exocytose suggère que ce phénomène pourrait contribuer au développement du diabète sucré. Résumé L'exocytose d'insuline, en réponse au glucose circulant dans le sang, est la fonction principale de la cellule β. Celle-ci permet de stabiliser le taux de glucose sanguin (glycémie). Le diabète de type 2 est caractérisé par une glycémie élevée due, principalement, à un défaut de sécrétion d'insuline en réponse au glucose. La compréhension des mécanismes qui contrôlent l'exocytose d'insuline est essentielle pour clarifier les causes du diabète sucré. Plusieurs composants impliqués dans ce processus ont été identifiés. Ceux-ci incluent les SNAREs Syntaxin-1, VAMP2 et SNAP25 et les GTPases Rab3 et Rab27 qui jouent un rôle dans les dernières étapes de l'exocytose. Pendant mon travail de thèse, j'ai étudié le rôle de Noc2, un des partenaires de Rab3 et Rab27, dans l'exocytose d'insuline. Nous avons déterminé que Noc2 s'associe aux granules de sécrétion d'insuline grâce à son interaction avec Rab27. La diminution de l'expression de Noc2 dans la lignée cellulaire β INS-1E, par ARN interférence, influence négativement la sécrétion d'insuline stimulée par différents sécrétagogues et prouve que cette protéine Noc2 est essentielle pour l'exocytose d'insuline. L'interaction avec Munc13, une protéine impliquée dans l'arrimage des vésicules, suggère que Noc2 participe au recrutement des granules d'insuline à la membrane plasmique. Ensuite, j'ai analysé l'adaptation de la machinerie d'exocytose à des concentrations supraphysiologiques de glucose. Le niveau d'expression de Rab3 et Rab27 et de leurs effecteurs Granuphilin/S1p4 et Noc2 est fortement diminué par une exposition prolongée des cellules β à haut glucose. L'effet observé est en relation avec l'induction de l'expression de ICER, un facteur de transcription surexprimé dans des conditions d'hyperglycémie et également dans des modèles génétiques de diabète de type 2. La surexpression de ICER dans des cellules INS-1E diminue l'expression de Rab3, Rab27, Granuphilin/Slp4 et Noc2 et par conséquent l'exocytose d'insuline. Ainsi, l'induction de ICER, après une exposition prolongée à haut glucose, régule négativement l'expression de protéines essentielles pour l'exocytose et altère la sécrétion d'insuline. Ce mécanisme pourrait contribuer au dysfonctionnement de l'exocytose d'insuline dans le diabète de type 2. Dans la dernière partie de ma thèse, j'ai investigué le rôle de la protéine Tomosyn-1 dans la formation du complexe SNARE. Cette protéine a une forte affinité pour Syntaxin-1 et contient un domaine SNARE. Tomosyn-1 est concentrée dans les régions cellulaires enrichies en granules de sécrétion. La diminution sélective de l'expression de Tomosyn-1 induit une réduction de l'exocytose stimulée par différents sécrétagogues. Cet effet est dû à un défaut de fusion des granules avec la membrane plasmique. Ceci nous indique que Tomosyn-1 intervient dans une phase importante de la préparation des vésicules à la fusion, qui est nécessaire à l'exocytose. Abstract: Insulin exocytosis from pancreatic β-cells plays a central role in blood glucose homeostasis. Diabetes mellitus is a complex metabolic disorder characterized by secretory dysfunctions in pancreatic β-cells and release of amounts of insulin that are inappropriate to maintain blood glucose concentration within normal physiological ranges. To define the causes of β-cell failure a basic understanding of the molecular mechanisms that control insulin exocytosis is essential. Some of the molecular components involved in this process have been identified, including the SNARE proteins VAMP2, Syntaxin-1 and SNAP25 and the two GTPases, Rab3 and Rab27, that regulate the final steps of insulin secretion. I first investigated the role of Noc2, a potential Rab3 and Rab27 partner, in insulin secretion. I found that Noc2 associates with Rab27 and is recruited by this GTPase on insulin- containing granules. Silencing of the Noc2 gene by RNA interference led to a strong impairment in the capacity of the β-cell line INS-1E to respond to secretagogues, indicating that appropriate levels of the protein are essential for insulin exocytosis. I also showed that Noc2 interacts with Munc13, a protein that controls vesicle priming, suggesting a possible involvement of Noc2 in the recruitment of secretory granules at the plasma membrane. In the second part of my thesis, I investigated the adaptation of the molecular machinery of exocytosis to physiopathological conditions. I found that the expression of Rab3, Rab27 and of their effectors Granuphilin/Slp4 and Noc2 is dramatically decreased by chronic exposure of β-ce1ls to supraphysiological glucose levels. The observed glucotoxic effect is a consequence of the induction of ICER, a transcriptional repressor that is increased by prolonged hyperglycemia and in genetic models of type 2 diabetes. Overexpression of ICER reduced Granuphilin, Noc2, Rab3 and Rab27 levels and inhibited exocytosis. These results suggest that the presence of inappropriate levels of ICER diminishes the expression of a group of proteins essential for exocytosis and contributes to defective insulin release in type 2 diabetes. In the last part of my thesis, I focused my attention on the role of Tomosyn-1, a Syntaxin-1 binding protein possessing a SNARE-like motif, in the control of SNARE complex assembly. I found that Tomosyn-1 is concentrated in cellular compartments enriched in insulin-containing secretory granules. Silencing of Tomosyn-1 did not affect the number of secretory granules docked at the plasma membrane but decreased their release probability, resulting in a reduction in stimulus-induced insulin exocytosis. These findings suggest that Tomosyn-1 is involved in a post-docking event that prepares secretory granules for fusion and is necessary to sustain exocytosis in response to insulin secretagogues.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Citalopram, a new bicyclic antidepressant, is the most selective serotonin reuptake inhibitor. In a number of double-blind controlled studies, citalopram was compared to placebo and to known tricyclic antidepressants. These studies have shown their efficacy and good safety. The inefficacy of a psychotropic treatment in at least 20% of depressives has led a number of authors to propose original drug combinations and associations, like antidepressant/lithium (Li), antidepressant/sleep deprivation (agrypnia), antidepressant/ECT, or antidepressant/LT3. The aim of this investigation is to evaluate the clinical effectiveness and safety of a combined citalopram/lithium treatment in therapy-resistant patients, taking account of serotonergic functions, as tested by the fenfluramine/prolactin test, and of drug pharmacokinetics and pharmacogenetics of metabolism. DESIGN OF THE STUDY: A washout period of 3 days before initiating the treatment is included. After an open treatment phase of 28 days (D) with citalopram (20 mg D1-D3; 40 mg D4-D14; 40 or 60 mg D15-D28; concomitant medication allowed: chloral, chlorazepate), the nonresponding patients [less than 50% improvement in the total score on the 21 item-Hamilton Depression Rating Scale (HDRS)] are selected and treated with or without Li (randomized in double-blind conditions: citalopram/Li or citalopram/placebo) during the treatment (D29-D35). Thereafter, all patients included in the double-blind phase subsequently receive an open treatment with citalopram/Li for 7 days (D36-D42). The hypothesis of a relationship between serotoninergic functions in patients using the fenfluramine/prolactin test (D1) and the clinical response to citalopram (and Li) is assessed. Moreover, it is evaluated whether the pharmacogenetic status of the patients, as determined by the mephenytoin/dextromethorphan test (D0-D28), is related to the metabolism of fenfluramine and citalopram, and also to the clinical response. CLINICAL ASSESSMENT: Patients with a diagnosis of major depressive disorders according to DSM III are submitted to a clinical assessment of D1, D7, D14, D28, D35, D42: HDRS, CGI (clinical global impression), VAS (visual analog scales for self-rating of depression), HDRS (Hamilton depression rating scale, 21 items), UKU (side effects scale), and to clinical laboratory examens, as well as ECG, control of weight, pulse, blood pressure at D1, D28, D35. Fenfluramine/prolactin test: A butterfly needle is inserted in a forearm vein at 7 h 45 and is kept patent with liquemine. Samples for plasma prolactin, and d- and l-fenfluramine determinations are drawn at 8 h 15 (base line). Patients are given 60 mg fenfluramine (as a racemate) at 8 h 30. Kinetic points are determined at 9 h 30, 10 h 30, 11 h 30, 12 h 30, 13 h 30. Plasma levels of d- and l-fenfluramine are determined by gas chromatography and prolactin by IRNA. Mephenytoin/dextromethorphan test: Patients empty their bladders before the test; they are then given 25 mg dextropethorphan and 100 mg mephenytoin (as a racemate) at 8 h 00. They collect all urines during the following 8 hours. The metabolic ratio is determined by gas chromatography (metabolic ratio dextromethorphan/dextrorphan greater than 0.3 = PM (poor metabolizer); mephenytoin/4-OH-mephenytoin greater than 5.6, or mephenytoin S/R greater than 0.8 = PM). Citalopram plasma levels: Plasma levels of citalopram, desmethylcitalopram and didesmethylcitalopram are determined by gas chromatography--mass spectrometry. RESULTS OF THE PILOT STUDY. The investigation has been preceded by a pilot study including 14 patients, using the abovementioned protocol, except that all nonresponders were medicated with citalopram/Li on D28 to D42. The mean total score (n = 14) on the 21 item Hamilton scale was significantly reduced after the treatment, ie from 26.93 +/- 5.80 on D1 to 8.57 +/- 6.90 on D35 (p less than 0.001). A similar patCitalopram, a new bicyclic antidepressant, is the most selective serotonin reu

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Summary Prevalence of type 2 diabetes is increasing worldwide at alarming rates, probably secondarily to that of obesity. As type 2 diabetes is characterized by blood hyperglycemia, controlling glucose entry into tissues from the bloodstream is key to maintain glycemia within acceptable ranges. In this context, several glucose transporter isoforms have been cloned recently and some of them have appeared to play important regulatory roles. Better characterizing two of them (GLUT8 and GLUT9) was the purpose of my work. The first part of my work was focused on GLUT8, which is mainly expressed in the brain and is able to transport glucose with high affinity. GLUT8 is retained intracellularly at basal state depending on an N-terminal dileucine motif, thus implying that cell surface expression may be induced by extracellular triggers. In this regard, I was interested in better defining GLUT8 subcellular localization at basal state and in finding signals promoting its translocation, using an adenoviral vector expressing a myc epitope-tagged version of the transporter, thus allowing expression and detection of cell-surface GLUT8 in primary hippocampal neurons and PC 12 cells. This tool enabled me to found out that GLUT8 resides in a unique compartment different from lysosomes, endoplasmic reticulum, endosomes and the Golgi. In addition, absence of GLUT8 translocation following pharmacological activation of several signalling pathways suggests that GLUT8 does not ever translocate to the cell surface, but would rather fulfill its role in its unique intracellular compartment. The second part of my work was focused on GLUT9, which -contrarily to GLUT8 - is unable to transport glucose, but retains the ability to bind glucose-derived cross-linker molecules, thereby suggesting that it may be a glucose sensor rather than a true glucose transporter. The aim of the project was thus to define if GLUT9 triggers intracellular signals when activated. Therefore, adenoviral vectors expressing GLUTS were used to infect both ßpancreatic and liver-derived cell lines, as GLUTS is endogenously expressed in the liver. Comparison of gene expression between cells infected with the GLUTS-expressing adenovirus and cells infected with a GFP-expressing control adenovirus ended up in the identification of the transcription factor HNF4α as being upregulated in aGLUT9-dependent manner. Résumé La prévalence du diabète de type 2 augmente de façon alarmante dans le monde entier, probablement secondairement à celle de l'obésité. Le diabète de type 2 étant caractérisé par une glycémie sanguine élevée, l'entrée du glucose dans les tissus depuis la circulation sanguine constitue un point de contrôle important pour maintenir la glycémie à des valeurs acceptables. Dans ce contexte, plusieurs isoformes de transporteurs au glucose ont été clonées récemment et certaines d'entre elles sont apparues comme jouant d'importants rôles régulateurs. Mieux caractériser deux d'entre elles (GLUT8 et GLUT9) était le but de mon travail. La première partie de mon travail a été centrée sur GLUT8, qui est exprimé principalement dans le cerveau et qui peut transporter le glucose avec une haute affinité. GLUT8 est retenu intracellulairement à l'état basal de façon dépendante d'un motif dileucine N-terminal, ce qui implique que son expression à la surface cellulaire pourrait être induite par des stimuli extracellulaires. Dans cette optique, je me suis intéressé à mieux définir la localisation subcellulaire de GLUT8 à l'état basal et à trouver des signaux activant sa translocation, en utilisant comme outil un vecteur adénoviral exprimant une version marquée (tag myc) du transporteur, me permettant ainsi d'exprimer et de détecter GLUT8 à la surface cellulaire dans des neurones hippocampiques primaires et des cellules PC12. Cet outil m'a permis de montrer que GLUT8 réside dans un compartiment unique différent des lysosomes, du réticulum endoplasmique, des endosomes, ainsi que du Golgi. De plus, l'absence de translocation de GLUT8 à la suite de l'activation pharmacologique de plusieurs voies de signalisation suggère que GLUT8 ne transloque jamais à la membrane plasmique, mais jouerait plutôt un rôle au sein même de son compartiment intracellulaire unique. La seconde partie de mon travail a été centrée sur GLUT9, lequel -contrairement à GLUT8 -est incapable de transporter le glucose, mais conserve la capacité de se lier à des molécules dérivées du glucose, suggérant que ce pourrait être un senseur de glucose plutôt qu'un vrai transporteur. Le but du projet a donc été de définir si GLUT9 active des signaux intracellulaires quand il est lui-même activé. Pour ce faire, des vecteurs adénoviraux exprimant GLUT9 ont été utilisés pour infecter des lignées cellulaires dérivées de cellules ßpancréatiques et d'hépatocytes, GLUT9 étant exprimé de façon endogène dans le foie. La comparaison de l'expression des gènes entre des cellules infectées avec l'adénovirus exprimant GLUT9 et un adénovirus contrôle exprimant la GFP a permis d'identifier le facteur de transcription HNF4α comme étant régulé de façon GLUT9-dépendante. Résumé tout public Il existe deux types bien distincts de diabète. Le diabète de type 1 constitue environ 10 des cas de diabète et se déclare généralement à l'enfance. Il est caractérisé par une incapacité du pancréas à sécréter une hormone, l'insuline, qui régule la concentration sanguine du glucose (glycémie). Il en résulte une hyperglycémie sévère qui, si le patient n'est pas traité à l'insuline, conduit à de graves dommages à divers organes, ce qui peut mener à la cécité, à la perte des membres inférieurs, ainsi qu'à l'insuffisance rénale. Le diabète de type 2 se déclare plus tard dans la vie. Il n'est pas causé par une déficience en insuline, mais plutôt par une incapacité de l'insuline à agir sur ses tissus cibles. Le nombre de cas de diabète de type 2 augmente de façon dramatique, probablement à la suite de l'augmentation des cas d'obésité, le surpoids chronique étant le principal facteur de risque de diabète. Chez l'individu sain, le glucose sanguin est transporté dans différents organes (foie, muscles, tissu adipeux,...) où il est utilisé comme source d'énergie. Chez le patient diabétique, le captage de glucose est altéré, expliquant ainsi l'hyperglycémie. Il est ainsi crucial d'étudier les mécanismes permettant ce captage. Ainsi, des protéines permettant l'entrée de glucose dans la cellule depuis le milieu extracellulaire ont été découvertes depuis une vingtaine d'années. La plupart d'entre elles appartiennent à une sous-famille de protéines nommée GLUT (pour "GLUcose Transporters") dont cinq membres ont été caractérisés et nommés selon l'ordre de leur découverte (GLUT1-5). Néanmoins, la suppression de ces protéines chez la souris par des techniques moléculaires n'affecte pas totalement le captage de glucose, suggérant ainsi que des transporteurs de glucose encore inconnus pourraient exister. De telles protéines ont été isolées ces dernières années et nommées selon l'ordre de leur découverte (GLUT6-14). Durant mon travail de thèse, je me suis intéressé à deux d'entre elles, GLUT8 et GLUT9, qui ont été découvertes précédemment dans le laboratoire. GLUT8 est exprimé principalement dans le cerveau. La protéine n'est pas exprimée à la surface de la cellule, mais est retenue à l'intérieur. Des mécanismes complexes doivent donc exister pour déplacer le transporteur à la surface cellulaire, afin qu'il puisse permettre l'entrée du glucose dans la cellule. Mon travail a consisté d'une part à définir où se trouve le transporteur à l'intérieur de la cellule, et d'autre part à comprendre les mécanismes capables de déplacer GLUT8 vers la surface cellulaire, en utilisant des neurones exprimant une version marquée du transporteur, permettant ainsi sa détection par des méthodes biochimiques. Cela m'a permis de montrer que GLUT8 est localisé dans une partie de la cellule encore non décrite à ce jour et qu'il n'est jamais déplacé à la surface cellulaire, ce qui suggère que le transporteur doit jouer un rôle à l'intérieur de la cellule et non à sa surface. GLUT9 est exprimé dans le foie et dans les reins. Il ressemble beaucoup à GLUT8, mais ne transporte pas le glucose, ce qui suggère que ce pourrait être un récepteur au glucose plutôt qu'un transporteur à proprement parler. Le but de mon travail a été de tester cette hypothèse, en comparant des cellules du foie exprimant GLUT9 avec d'autres n'exprimant pas la protéine. Par des méthodes d'analyses moléculaires, j'ai pu montrer que la présence de GLUT9 dans les cellules du foie augmente l'expression de HNF4α, une protéine connue pour réguler la sécrétion d'insuline dans le pancréas ainsi que la production de glucose dans le foie. Des expériences complémentaires seront nécessaires afin de mieux comprendre par quels mécanismes GLUT9 influence l'expression de HNF4α dans le foie, ainsi que de définir l'importance de GLUT9 dans la régulation de la glycémie chez l'animal entier.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Under optimal non-physiological conditions of low concentrations and low temperatures, proteins may spontaneously fold to the native state, as all the information for folding lies in the amino acid sequence of the polypeptide. However, under conditions of stress or high protein crowding as inside cells, a polypeptide may misfold and enter an aggregation pathway resulting in the formation of misfolded conformers and fibrils, which can be toxic and lead to neurodegenerative illnesses, such as Alzheimer's, Parkinson's or Huntington's diseases and aging in general. To avert and revert protein misfolding and aggregation, cells have evolved a set of proteins called molecular chaperones. Here, I focussed on the human cytosolic chaperones Hsp70 (DnaK) and HspllO, and co-chaperone Hsp40 (DnaJ), and the chaperonin CCT (GroEL). The cytosolic molecular chaperones Hsp70s/Hspll0s and the chaperonins are highly upregulated in bacterial and human cells under different stresses and are involved both in the prevention and the reversion of protein misfolding and aggregation. Hsp70 works in collaboration with Hsp40 to reactivate misfolded or aggregated proteins in a strict ATP dependent manner. Chaperonins (CCT and GroEL) also unfold and reactivate stably misfolded proteins but we found that it needed to use the energy of ATP hydrolysis in order to evict over- sticky misfolded intermediates that inhibited the unfoldase catalytic sites. Ill In this study, we initially characterized a particular type of inactive misfolded monomeric luciferase and rhodanese species that were obtained by repeated cycles of freeze-thawing (FT). These stable misfolded monomeric conformers (FT-luciferase and FT-rhodanese) had exposed hydrophobic residues and were enriched with wrong ß-sheet structures (Chapter 2). Using FT-luciferase as substrate, we found that the Hsp70 orthologs, called HspllO (Sse in yeast), acted similarly to Hsp70 as were bona fide ATP- fuelled polypeptide unfoldases and was much more than a mere nucleotide exchange factor, as generally thought. Moreover, we found that HspllO collaborated with Hsp70 in the disaggregation of stable protein aggregates in which Hsp70 and HspllO acted as equal partners that synergistically combined their individual ATP-consuming polypeptide unfoldase activities to reactivate the misfolded/aggregated proteins (Chapter 3). Using FT-rhodanese as substrate, we found that chaperonins (GroEL and CCT) could catalytically reactivate misfolded rhodanese monomers in the absence of ATP. Also, our results suggested that encaging of an unfolding polypeptide inside the GroEL cavity under a GroES cap was not an obligatory step as generally thought (Chapter 4). Further, we investigated the role of Hsp40, a J-protein co-chaperone of Hsp70, in targeting misfolded polypeptides substrates onto Hsp70 for unfolding. We found that even a large excess of monomeric unfolded a-synuclein did not inhibit DnaJ, whereas, in contrast, stable misfolded a-synuclein oligomers strongly inhibited the DnaK-mediated chaperone reaction by way of sequestering the DnaJ co-chaperone. This work revealed that DnaJ could specifically distinguish, and bind potentially toxic stably aggregated species, such as soluble a-synuclein oligomers involved in Parkinson's disease, and with the help of DnaK and ATP convert them into from harmless natively unfolded a-synuclein monomers (chapter 5). Finally, our meta-analysis of microarray data of plant and animal tissues treated with various chemicals and abiotic stresses, revealed possible co-expressions between core chaperone machineries and their co-chaperone regulators. It clearly showed that protein misfolding in the cytosol elicits a different response, consisting of upregulating the synthesis mainly of cytosolic chaperones, from protein misfolding in the endoplasmic reticulum (ER) that elicited a typical unfolded protein response (UPR), consisting of upregulating the synthesis mainly of ER chaperones. We proposed that drugs that best mimicked heat or UPR stress at increasing the chaperone load in the cytoplasm or ER respectively, may prove effective at combating protein misfolding diseases and aging (Chapter 6).  - Dans les conditions optimales de basse concentration et de basse température, les protéines vont spontanément adopter un repliement natif car toutes les informations nécessaires se trouvent dans la séquence des acides aminés du polypeptide. En revanche, dans des conditions de stress ou de forte concentration des protéines comme à l'intérieur d'une cellule, un polypeptide peu mal se replier et entrer dans un processus d'agrégation conduisant à la formation de conformères et de fibrilles qui peuvent être toxiques et causer des maladies neurodégénératives comme la maladie d'Alzheimer, la maladie de Parkinson ou la chorée de Huntington. Afin d'empêcher ou de rectifier le mauvais repliement des protéines, les cellules ont développé des protéines appelées chaperonnes. Dans ce travail, je me suis intéressé aux chaperonnes cytosoliques Hsp70 (DnaK) et HspllO, la co-chaperones Hsp40 (DnaJ), le complexe CCT/TRiC et GroEL. Chez les bactéries et les humains, les chaperonnes cytosoliques Hsp70s/Hspl 10s et les « chaperonines» sont fortement activées par différentes conditions de stress et sont toutes impliquées dans la prévention et la correction du mauvais repliement des protéines et de leur agrégation. Hsp70 collabore avec Hsp40 pour réactiver les protéines agrégées ou mal repliées et leur action nécessite de 1ATP. Les chaperonines (GroEL) déplient et réactivent aussi les protéines mal repliées de façon stable mais nous avons trouvé qu'elles utilisent l'ATP pour libérer les intermédiaires collant et mal repliés du site catalytique de dépliage. Nous avons initialement caractérisé un type particulier de formes stables de luciférase et de rhodanese monomériques mal repliées obtenues après plusieurs cycles de congélation / décongélation répétés (FT). Ces monomères exposaient des résidus hydrophobiques et étaient plus riches en feuillets ß anormaux. Ils pouvaient cependant être réactivés par les chaperonnes Hsp70+Hsp40 (DnaK+DnaJ) et de l'ATP, ou par Hsp60 (GroEL) sans ATP (Chapitre 2). En utilisant la FT-Luciferase comme substrat nous avons trouvé que HspllO (un orthologue de Hsp70) était une authentique dépliase, dépendante strictement de l'ATP. De plus, nous avons trouvé que HspllO collaborait avec Hsp70 dans la désagrégation d'agrégats stables de protéines en combinant leurs activités dépliase consommatrice d'ATP (Chapitre 3). En utilisant la FT-rhodanese, nous avons trouvé que les chaperonines (GroEL et CCT) pouvaient réactiver catalytiquement des monomères mal repliés en absence d'ATP. Nos résultats suggérèrent également que la capture d'un polypeptide en cours de dépliement dans la cavité de GroEL et sous un couvercle du complexe GroES ne serait pas une étape obligatoire du mécanisme, comme il est communément accepté dans la littérature (Chapitre 4). De plus, nous avons étudié le rôle de Hsp40, une co-chaperones de Hsp70, dans l'adressage de substrats polypeptidiques mal repliés vers Hsp70. Ce travail a révélé que DnaJ pouvait différencier et lier des polypeptide mal repliés (toxiques), comme des oligomères d'a-synucléine dans la maladie de Parkinson, et clairement les différencier des monomères inoffensifs d'a-synucléine (Chapitre 5). Finalement une méta-analyse de données de microarrays de tissus végétaux et animaux traités avec différents stress chimiques et abiotiques a révélé une possible co-expression de la machinerie des chaperonnes et des régulateurs de co- chaperonne. Cette meta-analyse montre aussi clairement que le mauvais repliement des protéines dans le cytosol entraîne la synthèse de chaperonnes principalement cytosoliques alors que le mauvais repliement de protéines dans le réticulum endoplasmique (ER) entraine une réponse typique de dépliement (UPR) qui consiste principalement en la synthèse de chaperonnes localisées dans l'ER. Nous émettons l'hypothèse que les drogues qui reproduisent le mieux les stress de chaleur ou les stress UPR pourraient se montrer efficaces dans la lutte contre le mauvais repliement des protéines et le vieillissement (Chapitre 6).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Résumé : La majorité des souches de souris de laboratoire sont résistantes à l'infection par le parasite Leishmania major (L. major). A l'opposé, les souris de la souche BALB développent une maladie évolutive. La résistance et la sensibilité sont corrélées avec l'apparition de lymphocytes T CD4+ spécifiques du parasite, Th1 (de l'anglais T helper) ou Th2 respectivement. La réponse aberrante Th2 chez les souris de la souche BALB/c dépend, au moins en partie, de façon critique de la production rapide d'IL-4 suite à l'infection. Ce pic précoce d'IL-4 est produit par une population de lymphocytes T CD4+ restreinte aux molécules du MHC de classe II, exprimant les chaînes du récepteur des cellules T Vß4-Va8. Ces lymphocytes sont spécifiques d'un épitope de l'homologue Leishmania de la molécule RACK1 des mammifères, appelée LACK. Il a été clairement démontré que l'IL-4 rapidement produite par ces cellules T CD4+ Vß4-Va8 induit la maturation Th2 responsable de la sensibilité vis-à-vis de L. major. Des expériences ont été entreprises pour étudier la régulation de cette réponse précoce d'IL-4. Dans ce travail, nous avons documenté, dans les cellules provenant des ganglions de souris sensibles infectées par L. major, une augmentation de la transcription de l'ARNm de l'IL-2 qui précède la réponse précoce d'IL-4. La neutralisation de l'IL-2 durant les premiers jours d'infection induit la maturation des cellules Thl et la résistance vis-à-vis de L. major. Ces effets de l'anticorps anti-IL-2 neutralisant sont liés à sa capacité d'interférer avec la transcription rapide d'IL-4 des cellules CD4+ réactives à l'antigène LACK. Une augmentation similaire d'IL-2 survient chez les souris résistantes C57BL/6 qui sont incapables de générer la réponse précoce d'IL-4. Cependant, la protéiné LACK induit une transcription précoce d'IL-2 uniquement chez les souris sensibles. Des expériences de reconstitution utilisant des souris C.B.-17 SCID et des cellules T CD4+ réactives à LACK provenant de souris BALB/c IL-2-~démontrent un mode d'action autocrine de l'IL-2 sur la régulation de la réponse précoce d'IL4. Par conséquent, chez les souris C57BL/6, l'absence du pic précoce d'ARNm de l'IL-4 important pour la progression de la maladie paraît liée à l'incapacité des cellules T CD4+ réactives à LACK de produire de l'IL-2. Un rôle dans le contrôle de la production précoce d'IL-4 par les cellules T régulatrices CD4+CD25+ a été investigué en déplétant in vivo cette population de cellules. La déplétion induit une élévation du pic précoce de l'ARNm de l'IL-4 dans les ganglions drainant de souris BALB/c, ainsi qu'une exacerbation du cours de la maladie avec des taux augmentés d'IL-4 dans les ganglions. La réponse rapide d'IL-2 vis-à-vis de L. major est aussi significativement augmentée chez les souris BALB/c déplétées en cellules CD4+CD25+. De plus, nous avons démontré que le transfert de 10puissance(7) cellules provenant de la rate de souris BALB/c déplétées en cellules T régulatrices CD4+CD25+ rend les souris SCID sensibles à l'infection et permet la différentiation Th2. Au contraire, les souris SCID reconstituées avec 10' cellules de la rate de souris BALB/c contrôle sont résistantes à infection par L. major et développent une réponse Thl. Chez les souris SCID reconstituées avec des cellules de rate déplétées en cellules exprimant le marqueur CD25, le traitement avec un anticorps neutralisant l'IL-4 au moment de l'infection par L. major prévient le développement de la réponse Th2 et rend ces souris résistantes à l'infection. Ces résultats démontrent que les cellules T régulatrices CD4+CD25+ jouent un rôle dans la régulation du pic précoce d'IL-4 responsable du développement cellulaire Th2 dans ce modèle d'infection. Summary Mice from most strains are resistant to infection with Leishmania major (L. major). In contrast, BALB mice develop progressive disease. Resistance and susceptibility result from parasite-specific CD4+ Thl or Th2 cells, respectively. The aberrant Th2 response in BALB/c mice depends, at least in part, upon the production of IL-4 early after infection. The CD4+ T cells responsible for this early IL-4 response to L. major express a restricted TCR repertoire (Vß4-Va8) and respond to an I-Ad-restricted epitope of the Leishmania homologue of mammalian RACK1, designated LACK. The role of these cells and the IL-4 they produce for subsequent Th2 cell development and disease progression in BALB/c mice was demonstrated. Experiments have been undertaken to study the regulation of the rapid IL-4 production to L. major. In this report, we document an IL-2 mRNA burst, preceding the reported early IL-4 response, in draining lymph nodes of susceptible mice infected with L. major. Neutralization of IL-2 during the first days of infection redirected Thl cell maturation and resistance to L. major, through interference with the rapid IL-4 transcription in LACKreactive CD4+ cells. A burst of IL-2 transcripts also occurred in infected C57BL/6 mice that do not mount an early IL-4 response. However, although the LACK protein induced IL-2 transcripts in susceptible mice, it failed to trigger this response in resistant C57BL/6 mice. Reconstitution experiments using C.B.-17 SCID mice and LACK-reactive CD4+ T cells from IL-2-/- BALB/c mice showed that triggering of the early IL-4 response required autocrine IL2. Thus, in C57BL/6 mice, the inability of LACK-reactive CD4+ T cells to express early IL-4 mRNA transcription, important for disease progression, appears due to an incapacity of these cells to produce IL-2. A role for CD4+CD25+ regulatory T cells in the control of this early IL-4 production was investigated by depleting in vivo this regulatory T cell population. Depletion induced an increase in the early burst of IL-4 mRNA in the draining lymph nodes of BALB/c mice, and exacerbated the course of disease with higher levels of IL-4 mRNA and protein in their lymph nodes. The rapid IL-2 response to L. major is also significantly enhanced in BALB/c mice depleted of CD4+CD25+ cells. We further showed that transfer of 10~ BALB/c spleen cells that were depleted of CD4+CD25+ regulatory T cells rendered SCID mice susceptible to infection and allowed Th2 differentiation while SCID mice reconstituted with 10 control BALB/c spleen cells were resistant to infection with L. major and developed a Thl response. Treatment with a mAb against IL-4 upon infection with L. major in SCID mice reconstituted with CD25-depleted spleen cells prevented the development of Th2 polarization and rendered them resistant to infection. These results demonstrate that CD4+CD25+ regulatory T cells play a role in regulating the early IL-4 mRNA and the subsequent development of a Th2 response in this model of infection.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

L'insuline, produite par les cellules β du pancréas, joue un rôle central dans le contrôle de la glycémie. Un manque d'insuline entraine le diabète de type 2, une maladie répandue au stade d'épidémie au niveau mondial. L'augmentation du nombre de personnes obèses est une des causes principales du développement de la maladie. Avec l'obésité les tissus tels que le foie, le muscle, et le tissu adipeux deviennent résistants à l'insuline. En général, cette résistance est équilibrée par une augmentation de la sécrétion d'insuline. De ce fait, un grand nombre d'individus obèses ne deviennent pas diabétiques. Lorsque les cellules β ne produisent plus suffisamment d'insuline, alors le diabète se développe. Dans l'obésité, les cellules graisseuses sont résistantes à l'insuline et relâchent des lipides et autres produits qui affectent le bon fonctionnement et la vie des cellules β. «c-Jun Ν terminal Kinase» (JNK) est une enzyme qui joue un rôle important dans la résistance de l'insuline des cellules graisseuses. Cette même en2yme contribue aussi au déclin de la cellule β dans les conditions diabétogènes, et représente ainsi une cible thérapeutique potentielle du diabète. L'objectif de cette thèse a été de comprendre le mécanisme conduisant à l'activité de JNK dans les adipocytes et cellules β, dans l'obésité et le diabète de type 2. Nous montrons que les variations de JNK sont la conséquence de taux anormaux de JIP-1/EB1, une protéine qui a été impliquée dans certaines formes génétiques de diabète de type 2. En outre nous décrivons le mécanisme responsable des anomalies de JIP1/IB1 dans les adipocytes et cellules β. La restauration des taux de JIP-1/EB1 dans les deux types cellulaires pourrait être un objectif des thérapeutiques antidiabétiques actuelles et futures. - Le nombre d'individus touchés par le diabète de type 2 atteint aujourd'hui des proportions épidémiques à l'échelle mondiale. L'augmentation de la prévalence de l'obésité est la cause principale du développement de la maladie, qui, en général, survient suite à une perte de la sensibilité à l'insuline des tissus périphériques. Dans un grand nombre des cas, l'insulino-résistance est compensée par une augmentation de la sécrétion de l'insuline par les cellules β pancréatiques. Le diabète apparaît lorsque l'insuline n'est plus produite en quantité suffisante pour contrecarrer la résistance à l'insuline des tissus. Le défaut de production de l'insuline résulte du dysfonctionnement et de la réduction massive des cellules β. Les acides gras libres non estérifiés, en particulier le palmitate, provenant d'une alimentation riche en lipides et libérés par les adipocytes insulino-résistants contribuent au déclin de la cellule β en activant la voie de signalisation «cJun N-terminal kinase» (JNK). L'activation de JNK contribue aussi à la résistance à l'insuline des adipocytes dans l'obésité, soulignant ainsi l'importance de cette voie de signalisation dans la pathophysiologie du diabète. L'objectif de cette thèse a été de comprendre les mécanismes qui régulent JNK dans les cellules β et les adipocytes. Nous montrons que l'activation de JNK dans ces deux types cellulaires est la conséquence de la variation des taux de «JNK interacting protein 1» appelé aussi «islet brain 1» (JEP-1/ΓΒΙ), une protéine qui attache les kinases de la signalisation de JNK et dont des variations génétiques ont été associées avec le diabète de type 2. Dans les cellules β cultivées avec du palmitate, ainsi que dans les adipocytes dans l'obésité, l'expression de JEP-l/BBl est modifiée. Les modulations de l'expression de JEP-1/ΓΒΙ sont réalisées par le facteur de transcription «inducible cAMP early repressor» (ICER). L'expression d'ICER dans les adipocytes est diminuée dans l'obésité, et corrèle avec l'augmentation des niveaux de JEP-1/IB1. A l'inverse, le niveau d'expression d'ICER est augmenté dans les cellules β cultivées avec du palmitate, et cette augmentation perturbe le bon fonctionnement des cellules en réduisant les niveaux de JEP-l/IBl. Comme le palmitate, les particules pro-athérogéniques LDL-cholesterol oxydés, sont élevées chez les personnes obèses et diabétiques et sont délétères aux cellules β. Ces particules modifiées activent JNK dans les cellules β en diminuant l'expression de JIP-1/IB1 via ICER. Tous ces résultats montrent que le dérèglement de l'expression de JIP-l/EBl par ICER joue un rôle central dans l'activation de JNK dans les adipocytes et cellules β en souffrance dans l'obésité et le diabète de type 2. La restauration appropriée des niveaux de JEPl/IBl et d'ICER pourrait être considérée comme un objectif pour mesurer l'efficacité des traitements antidiabétiques actuels et futurs. - Type 2 diabetes has reached epidemic proportions worldwide, and poses a major socio-economic burden on developed and developing societies. The disease is often accompanied by obesity, and arises when β-cells produce insufficient insulin to meet the increased hormone demand, caused by insulin resistance. In obesity, enlargement of adipocytes contribute to their dysfunction, which is characterized by the abnormal release of some bioactive products such as non-esterified free fatty acids (NEF As). Chronic plasma elevation of NEF As elicits β-cell dysfunction and death, thereby, representing a key feature for development of diabetes in obesity (diabesity). Palmitate is the most abundant circulating NEF As in obesity, which triggers adipocytes and β-cell dysfunction. The effects of palmitate rely on the induction of the cJun N-terminal kinase (JNK) pathway. Activation of JNK promotes both β-cells dysfunction and insulin resistance in adipocytes. This thesis was undertaken to investigate the mechanisms accounting for the induction of the JNK pathway caused by palmitate. JNK is regulated by the scaffold protein JNK interacting protein-1, also called islet brain 1 (JIP-1/IB1). The levels of JDM/IB1 are critical for glucose homeostasis, as genetic variations within the gene were associated with diabetes. We found that activation of JNK in both, β-cells exposed to palmitate, and in adipocytes of obese mice, results from variations in the expression of JIP-l/EBl. Modifications in the JIP-1/IB1 levels were the consequence of abnormal expression of the inducible cAMP early repressor (ICER) in the two cell types. In addition, our data show that this repressor plays a key role in abnormal production of adipocyte hormones and β-cell dysfunction evoked by the pro-atherogenic oxidized LDL. Taken together, this study proposes that fine-tuning of appropriate levels of JIP-l/EBl, and ICER could circumvent β-cell failure, adipocyte dysfunction, and thereby, development of diabesity.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

AbstractPlants continuously grow during their complete life span and understanding the mechanisms that qualitatively regulate their traits remains a challenging topic in biology. The hormone auxin has been identified as a crucial molecule for shaping plant growth, as it has a role in most developmental processes. In the root, the directional, so-called polar transport of auxin generates a peak of concentration that specifies and maintains the stem cell niche and a subsequent gradient of decreasing concentration that also regulates cell proliferation and differentiation. For these reasons, auxin is considered the main morphogen of the root, as it is fundamental for its organization and maintenance. Recently, in Arabidopsis thaliana, a natural variation screen allowed the discovery of BREVIS RADIX (BRX) gene as a limiting factor for auxin responsive gene expression and thus for root growth.In this study, we discovered that BRX is a direct target of auxin that positively feeds back on auxin signaling, as a transcriptional co-regulator, through interaction with the Auxin Response Factor (ARF) MONOPTEROS (MP), modulating the auxin gene response magnitude during the transition between division and differentiation in the root meristem. Moreover, we provide evidence that BRX is activated at the plasma membrane level as an associated protein before moving into the nucleus to modulate cellular growth.To investigate the discrepancy between the auxin concentration and the expression pattern of its downstream targets, we combined experimental and computational approaches. Expression profiles deviating from the auxin gradient could only be modeled after intersection of auxin activity with the observed differential endocytosis pattern and with positive auto- regulatory feedback through plasma- membrane-to-nucleus transfer of BRX. Because BRX is required for expression of certain auxin response factor targets, our data suggest a cell-type-specific endocytosis-dependent input into transcriptional auxin perception. This input sustains expression of a subset of auxin-responsive genes across the root meristem's division and transition zones and is essential for meristem growth. Thus, the endocytosis pattern provides specific positional information to modulate auxin response. RésuméLes plantes croissent continuellement tout au long de leur cycle de vie. Comprendre et expliquer les mécanismes impliqués dans ce phénomène reste à l'heure actuelle, un défi. L'hormone auxine a été identifiée comme une molécule essentielle à la régulation de la croissance des plantes, car impliquée dans la plupart des processus développementaux. Dans la racine, le transport polaire de l'auxine, par la génération d'un pic de concentration, spécifie et maintient la niche de cellules souches, et par la génération d'un gradient de concentration, contrôle la prolifération et la différentiation cellulaire. Puisque l'auxine est essentielle pour l'organisation et la maintenance du système racinaire, il est considéré comme son principal morphogène. Récemment, dans la plante modèle, Arabidopsis thalinana, un criblage des variations génétique a permis d'identifier le gène Brevis radix (BRX) comme facteur limitant l'expression des gènes de réponse à l'auxine et par là même, la croissance de la racine.Dans ce travail, nous avons découvert que BRX est une cible direct de l'auxine qui rétroactive positivement le signalement de l'hormone, agissant ainsi comme un régulateur transcriptionnel à travers l'interaction avec la protéine Monopteros (MP) de la famille des facteurs de réponse à l'auxine (Auxin Responsive Factor, ARF), et modulant ainsi la magnitude de la réponse des gènes reliés à l'auxine durant la division et la différentiation cellulaire dans le méristème de la racine. De plus, nous fournissons des preuves que BRX est activées au niveau de la membrane plasmique, tel une protéine associée se déplaçant à l'intérieur du noyau et modulant la croissance cellulaire.Pour mener à bien l'investigation des divergences entre la concentration de l'auxine et les schémas d'expression de ses propres gènes cibles, nous avons combiné les approches expérimentales et computationnelles. Les profiles d'expressions déviant du gradient d'auxine pourraient seulement être modéliser après intersection de l'activité de l'auxine avec les schémas différentiels d'endocytose observés et les boucles de rétroaction positives et autorégulatrices par le transfert de BRX de la membrane plasmique au noyau. Puisque BRX est requis pour l'expression de certains gènes cibles des facteurs de réponse à l'auxine, nos données suggèrent une contribution dépendante d'une endocytose spécifique au type de cellule dans la perception transcriptionnelle à l'auxine Cette contribution soutient l'expression d'un sous-set de gène de réponse à l'auxine dans la division du méristème racinaire et la zone de transition, et par conséquent, est essentielle pour la croissance méristematique. Ainsi, le schéma d'endocytose fournit des informations positionnelles spécifiques à la modulation de la réponse à l'auxine.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Le maintien d'une concentration sanguine constante de calcium est d'une importance cruciale et trois organes participent à la balance calcique normale : les reins, les intestins et les os. La concentration plasmatique de calcium est strictement régulée par l'hormone parathyroïdienne (PTH) et par la vitamine D. Des variations circadiennes de la PTH, de la vitamine D ainsi que du calcium plasmatique ont été décrites précédemment chez l'humain ainsi que chez le rat. Ces rythmes de PTH dans le sérum sont importants pour la régulation du remodelage de l'os. En effet, il a été montré chez les souris C57BL/6J que des injections de PTH une fois par jour mènent à une augmentation de la densité minérale de l'os alors que l'infusion en continu de PTH est associée à une diminution de cette densité. La vitamine D joue également un rôle fondamental dans la physiologie osseuse, car un déficit en vitamine D peut conduire à une ostéomalacie. Cependant la fonction des oscillations de vitamine D au niveau de l'homéostasie osseuse reste inconnue. L'horloge circadienne est un système interne de contrôle biologique du temps générant des rythmes de 24 heures dans l'expression des gènes, ainsi que dans la physiologie et le comportement. Ce contrôle s'opère par des boucles rétroactives positives et négatives de l'expression de gènes circadiens tels que CLOCK, BMAL1, CRY1 et 2 ou PERI et 2. Dans ce travail, nous avons émis l'hypothèse que l'homéostasie calcique est sous le contrôle de l'horloge circadienne. Dans un premier temps, nous avons montré chez les souris C57BL/6J des variations journalières des concentrations de calcium, de PTH et de vitamine D dans le sang, ainsi que de calcium dans les urines. Nous avons également démontré des changements au niveau de l'expression rénale des gènes importants dans l'homéostasie du calcium, tant au niveau de l'ARN messager que des protéines. Ensuite, pour analyser le rôle du système de l'horloge circadienne dans l'homéostasie du calcium, nous avons étudié des souris dans lesquelles a été supprimé le gène CLOCK crucial pour la fonction de l'horloge et nous avons comparé ces souris à des souris de type sauvage de même portée. Les souris CLOCK-I- étaient hypercalciuriques à chaque moment de la journée. Cependant le rythme circadien de l'excrétion de calcium était préservé. Le taux de calcium plasmatique ne différait pas entre les génotypes, mais les souris CLOCK -/- ne montraient pas de variations journalières de ce paramètre. Une perte du rythme journalier était également observée pour les niveaux de vitamine D, perte qui pourrait être une cause de l'altération de la micro-architecture osseuse révélée chez les souris CLOCK-/-. En effet, ces souris montrent une diminution du nombre de trabécules, de leur volume ainsi que de leur surface, ce qui suggère la présence d'ostéoporose. Nous avons également trouvé que le rythme de l'expression de l'ARN messager de CYP27B1 était aboli dans les reins des souris CLOCK -/-, ce qui peut expliquer l'altération du rythme de la vitamine D. Les taux sanguins de PTH étaient comparables entre les souris CLOCK -/- et de type sauvage. Dans les reins, une augmentation de l'expression de l'ARN messager de TRPV5 et NCX1 a été constatée, ce qui suggérerait une augmentation de la réabsorption de calcium dans le tubule convoluté distal et dans le tubule connecteur. Dans les intestins, la réabsorption calcique était diminuée, chez les souris CLOCK-I-, fait confirmé par une diminution des niveaux d'ARN messager de TRPV6 et PMCAL. En résumé, la suppression du gène CLOCK chez les souris a conduit à une hypercalciurie, une altération du rythme des taux plasmatiques de calcium et de vitamine D et à une détérioration de l'architecture osseuse. Pour conclure, ces résultats montrent que l'horloge circadienne est essentielle à l'homéostasie calcique ainsi qu'à la physiologie des os. - L'ostéoporose affecte environ 22 millions de femmes et 5.5 millions d'hommes en Europe, réduisant significativement leur qualité de vie et a causé 3.5 millions de nouvelles fractures en 2010. Les dépenses totales liées à ces fractures ont atteint 37 milliards d'euro et ce coût devrait augmenter de 25% d'ici à 2025. Le nombre de nouvelles fractures dues à l'ostéoporose à travers le monde est estimé à environ 1000 par heure. Parmi les causes de l'ostéoporose, le déficit én calcium et/ou en vitamine D joue un rôle important, mais il existe également des causes génétiques ou liées à des facteurs comme les hormones sexuelles (estrogènes, testostérone), l'âge, le tabac, le poids corporel, certains médicaments,... La vie est rythmique : ceci est dû à l'alternance naturelle du jour et de la nuit et de ses effets sur le corps. La prise alimentaire, par exemple, est un processus qui a lieu pendant la phase active, qui est prévisible (il se produit toujours au même moment) et qui peut être anticipé par le corps. Pour cela, une horloge interne est présente dans chaque cellule du corps et est synchronisée par la lumière du jour, entre autres stimuli. Cette horloge indique la phase du jour et régule l'expression de gènes impliqués dans les différents processus qui nécessitent une anticipation. Pendant mon travail de thèse, je me suis demandé si des îythmes circadiens (c'est-à-dire d'une durée d'environ 24 heures et indépendants des stimuli externes) étaient observables'pour les gènes régulant les flux de calcium dans le corps et si l'interruption de ces rythmes pouvait mener à des altérations de la qualité de l'os. J'ai d'abord travaillé avec des souris normales et j'ai pu montrer la présence de rythmes au niveau du calcium sanguin et urinaire, mais également au niveau des hormones et gènes qui contrôlent le métabolisme du calcium dans le corps, comme la vitamine D et l'hormone parathyroidienne. De manière intéressante, j'ai observé que la plupart de ces gènes ont un rythme synchronisé. J'ai ensuite utilisé un modèle de souris dans lequel l'horloge interne a été génétiquement invalidée et j'ai montré que ces souris présentent une augmentation de leur excrétion urinaire de calcium et un rythme circadien altéré de la vitamine D dans le sang. Ces souris absorbent aussi moins bien le calcium intestinal et présentent une ostéoporose marquée. Ce travail montre donc que l'horloge interne est nécessaire pour établir un rythme circadiens de certains facteurs influant les flux de calcium dans l'organisme, comme la vitamine D, et que la perturbation de ces rythmes mène à une dérégulation du métabolisme osseux. Ainsi, la perturbation de l'horloge interne peut causer une ostéoporose et une hypercalciurie qui pourraient aboutir à la formation de fractures et de calculs rénaux. L'extrapolation de ces observations chez l'homme ou à des changements plus subtiles des rythmes circadiens, comme le décalage horaire, restent à montrer. Cette recherche a démontré que les rythmes circadiens des mécanismes de régulation des flux de calcium dans l'organisme sont essentiels au maintien d'un squelette normal et suggère que les perturbations des rythmes circadiens pourraient être une nouvelle cause de l'ostéoporose. - Maintaining constant calcium concentration in the plasma is of a crucial importance and three organs participate in normal calcium balance - kidney, gut and bone. Plasma calcium concentration is strictly regulated by parathyroid hormone (PTH) and vitamin D. Circadian variations of PTH, vitamin D and plasma calcium were previously described in humans, as well as in rats. Rhythms in serum PTH are important for balanced bone remodelling. Indeed in C57BL/6J mice, PTH injection once per day leads to an increase in bone mineral density (BMD), whilst continuous infusion is associated with decreased BMD. Vitamin D also plays a crucial role in bone physiology, since the deficiency in vitamin D can lead to rickets/osteomalacia. However, the role of vitamin D rhythms in bone homeostasis remains unknown. The circadian clock is an. internal time-keeping system generating rhythms in gene expression with 24h periodicity, in physiology and in behaviour. It is operated by positive- and negative-feedback loops of circadian genes, such as CLOCK, BMAL1, CRY1 and 2 or PERI and 2. In this work, we hypothesized, that calcium homeostasis is under the control of the circadian clock. First, we showed daily variations in urinary calcium and serum calcium, PTH and l,25(OH)2 vitamin D, together with renal mRNA and protein levels of genes involved in calcium homeostasis in C57BL/6J mice. Second, and to investigate the role of the circadian clock system in calcium handling, we studied mice lacking the gene CLOCK crucial for fonction of the clock system and compared them to the WT littermates. CLOCK-/- mice were hypercalciuric at all timepoints of the day. However, the circadian rhythm of calcium excretion was preserved. Serum calcium levels did not differ between the genotypes, but CLOCK-/- mice did not exhibit daily variation for this parameter. Loss of rhythm was observed also for serum l,25(OH)2 vitamin D levels, which may be one of the causes of altered bone microarchitecture that was revealed in CLOCK-/- mice. They displayed increased trabecular separation and decreased trabecular number, trabecular bone volume and trabecular bone surface, suggestive of osteoporosis. We found that the rhythm of the mRNA expression of CYP27B1 was abolished in the kidney of CLOCK-/- mice, which could induce the altered rhythm of l,25(OH)2 vitamin. Serum PTH levels were comparable between CLOCK-/- and WT mice. In the kidney, increased mRNA expression of TRPV5 and NCX1 suggests increased calcium reabsorption in the distal convoluted and connecting tubule. In the gut, intestinal calcium absorption was decreased in CLOCK¬/- mice, confirmed by decreased mRNA levels of TRPV6 and PMCA1. In summary, deletion of the CLOCK gene in mice conducts to hypercalciuria, alteration of the rhythm in serum calcium and l,25(OH)2D levels, and impainnent of their bone microarchitecture. In conclusion, these data show that the circadian clock system is essential in calcium homeostasis and bone physiology.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The initiation of chromosomal replication must be tightly regulated so that the genome is replicated only once per cell cycle. In most bacteria, DnaA binds to the origin of replication and initiates chromosomal replication. DnaA is a dual-function protein that also acts as an important transcription factor that regulates the expression of many genes in bacteria. Thus, understanding how this protein is regulated during the bacterial cell cycle is of major importance. The α-proteobacterium Caulobacter crescentus is an excellent model to study the bacterial cell cycle, mainly because it is possible to isolate synchronized cell cultures and because it initiates the replication of its chromosome once per cell cycle and at a specific time of the cell cycle. This latest feature is of special interest for the major aim of my thesis work, which focused on the temporal and spatial regulation of the activity of the essential DnaA protein in C. crescentus. In Escherichia coli, the Hda protein converts ATP-DnaA into ADP- DnaA by stimulating the ATPase activity of DnaA, to prevent over-initiation of chromosome replication. We propose that there exists a similar mechanism in C. crescentus, which is not only involved in the temporal control of chromosome replication, but also in the control of gene expression. First, we provided evidences indicating that the hydrolysis of the ATP bound to DnaA is essential for the viability of C. crescentus. Our results suggest that ATP-DnaA promotes the initiation of chromosome replication, since we found that cells over-expressing a DnaA protein with a mutated ATPase domain, DnaA(R357A), over-initiated chromosome replication, unlike cells expressing the wild-type DnaA protein at similar levels. By contrast, the DnaA(R357A) protein was less active than DnaA in promoting the transcription of three essential genes, suggesting that these may be more efficiently activated by ADP-DnaA than ATP-DnaA. We propose that the ATP-DnaA to ADP-DnaA switch down-regulates the initiation of DNA replication while activating the transcription of several essential genes involved in subsequent cell cycle events. Second, we studied the role of the HdaA protein, homologous to Hda, in promoting the ATP- DnaA to ADP-DnaA switch in C. crescentus. HdaA is essential for viability and its depletion in the cell leads to an over-replication of the chromosome, indicating that HdaA is a negative regulator of DNA replication. HdaA dynamically co-localizes with the replisome. In this work, we identified DnaN, the β-clamp of the DNA polymerase, as the replisome component that interacts directly with HdaA and that recruits HdaA to the replisome in live C. crescentus cells. We also showed that a mutant HdaA protein that cannot interact or co-localize with DnaN is not functional, indicating that HdaA is probably activated by DnaN. However, we found that another non-functional HdaA protein, mutated in the conserved Arginine finger of its AAA+ domain, was able to localize at the replisome, suggesting that the AAA+ domain of HdaA exerts its essential function after the recruitment of HdaA to the replisome. We propose that HdaA stimulates the ATPase activity of DnaA once DNA replication is ongoing, via its interaction with DnaN and the activity of the two conserved R fingers of DnaA and HdaA. Finally, we created different strains in which HdaA, DnaN or DnaA were over-produced. We observed that the over-production of HdaA seems to lead to a delay in chromosome replication, while the over-production of DnaN had an opposite effect. Our results also indicate that the over-production of DnaA may intensify the over-initiation phenotype of cells depleted for HdaA. We conclude that the dynamic interplay of HdaA and DnaN in the cell contributes to regulating the ATP-DnaA/ADP-DnaA ratio in the cell, to ensure once per cell cycle initiation of chromosomal replication in C. crescentus. Altogether, our work provided important information on the regulation of the activity of DnaA in C. crescentus. Since DnaA, HdaA and DnaN are well-conserved proteins, most of our findings are useful to understand how chromosome replication and gene expression are controlled by DnaA in many other bacterial species. - L'initiation de la réplication des chromosomes doit être précisément régulée de telle sorte que le génome ne soit répliqué qu'une seule fois par cycle cellulaire. Chez la plupart des bactéries, DnaA se lie à l'origine de réplication du chromosome et en initie sa réplication. DnaA est aussi un facteur de transcription qui régule l'expression de nombreux gènes bactériens. De ce fait, il est très important de comprendre comment DnaA est régulée au cours du cycle cellulaire bactérien. L'a-protéobactérie Caulobacter crescentus est un excellent modèle pour étudier le cycle cellulaire bactérien, essentiellement parce qu'il est aisé d'isoler des populations de cellules synchronisées à la même étape du cycle cellulaire et parce que cette bactérie n'initie la réplication de son chromosome qu'une seule fois et à un moment précis de son cycle. Cette dernière caractéristique est particulièrement pertinente pour l'objectif de mon travail doctoral, qui consistait à comprendre comment l'activité de la protéine essentielle DnaA est régulée dans l'espace et dans le temps chez C. crescentus. Chez Escherichia coli, la protéine Hda convertie DnaA-ATP en DnaA-ADP en stimulant l'activité ATPasique de DnaA, ce qui empêche la sur-initiation de la réplication du chromosome. Nous proposons qu'un mécanisme similaire existe chez C. crescentus. Il serait non seulement nécessaire au contrôle de la réplication du chromosome, mais aussi au contrôle de l'expression de certains gènes. Dans un premier temps, nous avons mis en évidence le fait que l'hydrolyse de l'ATP lié à DnaA est un processus essentiel à la viabilité de C. crescentus. Nos résultats suggèrent que DnaA-ATP initie la réplication du chromosome, comme nous avons observé que des cellules qui sur-expriment une protéine DnaA(R357A) mutée sans domaine ATPasique fonctionnel, sur-initie la réplication de leur chromosome, contrairement aux cellules qui sur-expriment la protéine DnaA sauvage à des niveaux équivalents. Au contraire, la protéine DnaA(R357A) était moins active que la protéine DnaA sauvage pour promouvoir la transcription de trois gènes essentiels, ce qui suggère que ces derniers sont peut-être plus efficacement activés par DnaA-ADP que DnaA-ATP. Nous proposons que la conversion de DnaA-ATP en DnaA-ADP réprime l'initiation de la réplication, tandis qu'elle active la transcription de plusieurs gènes impliqués dans des étapes plus tardives du cycle cellulaire. Dans un deuxième temps, nous avons étudié le rôle de la protéine HdaA, homologue à Hda, dans la conversion de DnaA-ATP en DnaA-ADP chez C. crescentus. Cette protéine est essentielle à la viabilité de C. crescentus et sa déplétion donne des cellules qui sur-initient la réplication de leur chromosome, suggérant que HdaA est un répresseur de la réplication du chromosome. HdaA co-localise de manière dynamique avec le réplisome. Lors de mon travail doctoral, nous avons démontré que DnaN, le β-clamp de l'ADN polymérase, est l'élément qui recrute HdaA au réplisome in vivo. Nous avons aussi montré qu'une protéine HdaA mutante qui ne peut pas interagir ou co-localiser avec DnaN, n'est pas fonctionnelle, ce qui suggère que HdaA est activée par DnaN. Nous avons néanmoins aussi isolé une autre protéine HdaA non fonctionnelle, dont une arginine conservée de son domaine AAA+ était mutée, mais qui pouvait toujours co-localiser avec le réplisome, ce qui suggère que le domaine AAA+ de HdaA est nécessaire après le recrutement de HdaA au réplisome. Nous proposons que HdaA stimule l'activité ATPasique de DnaA qu'une fois que la réplication a commencé, grâce à son interaction avec DnaN et aux deux arginines conservées des protéines HdaA et DnaA. Finalement, nous avons construit différentes souches sur-exprimant HdaA, DnaN ou DnaA. Nous avons observé que la sur-production de HdaA retarde la réplication du chromosome, tandis que la sur-production de DnaN a un effet opposé. Nos observations suggèrent aussi que la sur-expression de DnaA dans des cellules déplétées pour HdaA aggrave leur phénotype de sur-initiation. Nous en concluons que HdaA et DnaN collaborent étroitement et de manière dynamique pour réguler le rapport DnaA-ATP/DnaA-ADP dans la cellule, pour s'assurer que la réplication du chromosome ne soit initiée qu'une seule fois par cycle cellulaire chez C. crescentus. Globalement, notre travail a mis en évidence des informations importantes sur la régulation de l'activité de DnaA chez C. crescentus. Comme DnaA, HdaA et DnaN sont des protéines très conservées, la plupart de nos découvertes sont utiles pour mieux comprendre comment la réplication du chromosome bactérien et l'expression des gènes sont contrôlées par DnaA chez de nombreuses autres espèces bactériennes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Summary Acquisition of lineage-specific cell cycle duration is an important feature of metazoan development. In Caenorhabditis a/egans, differences in cell cycle duration are already apparent in two-cell stage embryos, when the larger anterior blastomere AB divides before the smaller posterior blastomere P1. This time difference is under the control of anterior-posterior (A-P) polarity cues set by the PAR proteins. The mechanism by which these cues regulate the cell cycle machinery differentially in AB and P1 are incompletely understood. Previous work established that retardation of P1 cell division is due in part to preferential activation of an ATL1/CHK-1 dependent checkpoint in P1 but how the remaining time difference is controlled was not known at the onset of my work. The principal line of work in this thesis established that differential timing relies also on a mechanism that promotes mitosis onset preferentially in AB. The polo-like kinase PLK-1, a positive regulator of mitotic entry, is distributed in an asymmetric manner in two-cell stage embryos, with more protein present in AB than in P1. We find that PLK-1 asymmetry is regulated by anterior-posterior (A-P) polarity cues through preferential protein retention in the embryo anterior. Importantly, mild inactivation of plk-1 by RNAi delays entry into mitosis in P1 but not in AB, in a manner that is independent of ATL-1/CHK-1. Together, these findings favor a model in which differential timing of mitotic entry in C. elegans embryos relies on two complementary mechanisms: ATL-1/CHK-1 dependent preferential retardation in P1 and PLK-1 dependent preferential promotion in AB, which together couple polarity cues and cell cycle progression during early development. Besides analyzing PLK-1 asymmetry and its role in differential timing of two-cells stage embryos, we also characterized t2190, a mutant that exhibits reduced differential timing between AB and P1. We found this mutant to be a new allele of par-1. Additionally, we analyzed the role of NMY-2 in regulating the asynchrony of two-cell stage embryos, which may be uncoupled from its role in A-P polarity establishment and carried out a preliminary analysis of the mechanism underlying CDC-25 asymmetry between AB and P,. Overall, our works bring new insights into the mechanism controlling cell cycle progression in early C. elegans embryos. As most of the players important in C. elegans are conserved in other organisms, analogous mechanisms may be utilized in polarized cells of other species. Résumé Au cours du développement, les processus de division cellulaire sont régulés dans l'espace et le temps afin d'aboutir à la formation d'un organisme fonctionnel. Chez les Métazoaires, l'un des mécanismes de contrôle s'effectue au niveau de la durée du cycle cellulaire, celle-ci étant specifiée selon la lignée cellulaire. L'embryon du nématode Caenorhabditis elegans apparaît comme un excellent modèle d'étude de la régulation temporelle du cycle cellulaire. En effet, suite à la première division du zygote, l'embryon est alors composé de deux cellules de taille et d'identité différentes, appelées blastomères AB et P1. Ces deux cellules vont ensuite se diviser de manière asynchrone, le grand blastomère antérieur AB se divisant plus rapidement que le petit blastomère postérieur P1. Cette asynchronie de division est sous le contrôle des protéines PAR qui sont impliquées dans l'établissement de l'axe antéro-postérieur de l'embryon. A ce jour, les mécanismes moléculaires gouvernant ce processus d'asynchronie ne sont que partiellement compris. Des études menées précédemment ont établit que le retard de division observé dans le petit blastomère postérieur P1 était dû, en partie, à l'activation préférentielle dans cette cellule de ATL-1/CHK-1, protéines contrôlant la réponse à des erreurs dans le processus de réplication de l'ADN. L'analyse des autres mécanismes responsables de la différence temporelle d'entrée en mitose des deux cellules a été entreprise au cours de cette thèse. Nous avons considéré la possibilité que l'asynchronie de division était du à l'entrée préférentielle en mitose du grand blastomère AB. Nous avons établi que la protéine kinase PLK-1 (polo-like kinase 1), impliquée dans la régulation positive de la mitose, était distribuée de manière asymétrique dans l'embryon deux cellules. PLK-1 est en effet enrichi dans le blastomère AB. Cette localisation asymétrique de PLK-1 est sous le contrôle des protéines PAR et semble établie via une rétention de PLK-1 dans la cellule AB. Par ailleurs, nous avons démontré que l'inactivation partielle de plk-7 par interférence à ARN (RNAi) conduit à un délai de l'entrée en mitose de la cellule P1 spécifiquement, indépendamment des protéines régulatrices ATL-1/CHK-1. En conclusion, nous proposons un modèle de régulation temporelle de l'entrée en mitose dans l'embryon deux cellules de C. elegans basé sur deux mécanismes complémentaires. Le premier implique l'activation préférentielle des protéines ATL-1/CHK-1, et conduit à un retard d'entrée en mitose spécifiquement dans la cellule P1. Le second est basé sur la localisation asymétrique de la protéine kinase PLK-1 dans la cellule AB et induit une entrée précoce en mitose de cette cellule. Par ailleurs, nous avons étudié un mutant appelé t2190 qui réduit la différence temporelle d'entrée en mitose entre les cellules AB et P1. Nous avons démontré que ce mutant correspondait à un nouvel allèle du Bene par-1. De plus, nous avons analysé le rôle de NMY-2, une protéine myosine qui agit comme moteur moléculaire sur les filaments d'active; dans la régulation de l'asynchronie de division des blastomères AB et P1, indépendamment de sa fonction dans l'établissement de l'axe antéro-postérieur. Par ailleurs, nous avons commencé l'étude du mécanisme moléculaire régulant la localisation asymétrique entre les cellules AB et P1 de la protéine phosphatase CDC25, qui est également un important régulateur de l'entrée en mitose. En conclusion, ce travail de thèse a permis une meilleure compréhension des mécanismes gouvernant la progression du cycle cellulaire dans l'embryon précoce de C. elegans. Etant donné que la plupart des protéines impliquées dans ces processus sont conservées chez d'autres organismes multicellulaires, il apparaît probable que les mécanismes moléculaires révélés dans cette étude soit aussi utilisés chez ceux-ci.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Les plantes sont essentielles pour les sociétés humaines. Notre alimentation quotidienne, les matériaux de constructions et les sources énergétiques dérivent de la biomasse végétale. En revanche, la compréhension des multiples aspects développementaux des plantes est encore peu exploitée et représente un sujet de recherche majeur pour la science. L'émergence des technologies à haut débit pour le séquençage de génome à grande échelle ou l'imagerie de haute résolution permet à présent de produire des quantités énormes d'information. L'analyse informatique est une façon d'intégrer ces données et de réduire la complexité apparente vers une échelle d'abstraction appropriée, dont la finalité est de fournir des perspectives de recherches ciblées. Ceci représente la raison première de cette thèse. En d'autres termes, nous appliquons des méthodes descriptives et prédictives combinées à des simulations numériques afin d'apporter des solutions originales à des problèmes relatifs à la morphogénèse à l'échelle de la cellule et de l'organe. Nous nous sommes fixés parmi les objectifs principaux de cette thèse d'élucider de quelle manière l'interaction croisée des phytohormones auxine et brassinosteroïdes (BRs) détermine la croissance de la cellule dans la racine du méristème apical d'Arabidopsis thaliana, l'organisme modèle de référence pour les études moléculaires en plantes. Pour reconstruire le réseau de signalement cellulaire, nous avons extrait de la littérature les informations pertinentes concernant les relations entre les protéines impliquées dans la transduction des signaux hormonaux. Le réseau a ensuite été modélisé en utilisant un formalisme logique et qualitatif pour pallier l'absence de données quantitatives. Tout d'abord, Les résultats ont permis de confirmer que l'auxine et les BRs agissent en synergie pour contrôler la croissance de la cellule, puis, d'expliquer des observations phénotypiques paradoxales et au final, de mettre à jour une interaction clef entre deux protéines dans la maintenance du méristème de la racine. Une étude ultérieure chez la plante modèle Brachypodium dystachion (Brachypo- dium) a révélé l'ajustement du réseau d'interaction croisée entre auxine et éthylène par rapport à Arabidopsis. Chez ce dernier, interférer avec la biosynthèse de l'auxine mène à la formation d'une racine courte. Néanmoins, nous avons isolé chez Brachypodium un mutant hypomorphique dans la biosynthèse de l'auxine qui affiche une racine plus longue. Nous avons alors conduit une analyse morphométrique qui a confirmé que des cellules plus anisotropique (plus fines et longues) sont à l'origine de ce phénotype racinaire. Des analyses plus approfondies ont démontré que la différence phénotypique entre Brachypodium et Arabidopsis s'explique par une inversion de la fonction régulatrice dans la relation entre le réseau de signalisation par l'éthylène et la biosynthèse de l'auxine. L'analyse morphométrique utilisée dans l'étude précédente exploite le pipeline de traitement d'image de notre méthode d'histologie quantitative. Pendant la croissance secondaire, la symétrie bilatérale de l'hypocotyle est remplacée par une symétrie radiale et une organisation concentrique des tissus constitutifs. Ces tissus sont initialement composés d'une douzaine de cellules mais peuvent aisément atteindre des dizaines de milliers dans les derniers stades du développement. Cette échelle dépasse largement le seuil d'investigation par les moyens dits 'traditionnels' comme l'imagerie directe de tissus en profondeur. L'étude de ce système pendant cette phase de développement ne peut se faire qu'en réalisant des coupes fines de l'organe, ce qui empêche une compréhension des phénomènes cellulaires dynamiques sous-jacents. Nous y avons remédié en proposant une stratégie originale nommée, histologie quantitative. De fait, nous avons extrait l'information contenue dans des images de très haute résolution de sections transverses d'hypocotyles en utilisant un pipeline d'analyse et de segmentation d'image à grande échelle. Nous l'avons ensuite combiné avec un algorithme de reconnaissance automatique des cellules. Cet outil nous a permis de réaliser une description quantitative de la progression de la croissance secondaire révélant des schémas développementales non-apparents avec une inspection visuelle classique. La formation de pôle de phloèmes en structure répétée et espacée entre eux d'une longueur constante illustre les bénéfices de notre approche. Par ailleurs, l'exploitation approfondie de ces résultats a montré un changement de croissance anisotropique des cellules du cambium et du phloème qui semble en phase avec l'expansion du xylème. Combinant des outils génétiques et de la modélisation biomécanique, nous avons démontré que seule la croissance plus rapide des tissus internes peut produire une réorientation de l'axe de croissance anisotropique des tissus périphériques. Cette prédiction a été confirmée par le calcul du ratio des taux de croissance du xylème et du phloème au cours de développement secondaire ; des ratios élevés sont effectivement observés et concomitant à l'établissement progressif et tangentiel du cambium. Ces résultats suggèrent un mécanisme d'auto-organisation établi par un gradient de division méristématique qui génèrent une distribution de contraintes mécaniques. Ceci réoriente la croissance anisotropique des tissus périphériques pour supporter la croissance secondaire. - Plants are essential for human society, because our daily food, construction materials and sustainable energy are derived from plant biomass. Yet, despite this importance, the multiple developmental aspects of plants are still poorly understood and represent a major challenge for science. With the emergence of high throughput devices for genome sequencing and high-resolution imaging, data has never been so easy to collect, generating huge amounts of information. Computational analysis is one way to integrate those data and to decrease the apparent complexity towards an appropriate scale of abstraction with the aim to eventually provide new answers and direct further research perspectives. This is the motivation behind this thesis work, i.e. the application of descriptive and predictive analytics combined with computational modeling to answer problems that revolve around morphogenesis at the subcellular and organ scale. One of the goals of this thesis is to elucidate how the auxin-brassinosteroid phytohormone interaction determines the cell growth in the root apical meristem of Arabidopsis thaliana (Arabidopsis), the plant model of reference for molecular studies. The pertinent information about signaling protein relationships was obtained through the literature to reconstruct the entire hormonal crosstalk. Due to a lack of quantitative information, we employed a qualitative modeling formalism. This work permitted to confirm the synergistic effect of the hormonal crosstalk on cell elongation, to explain some of our paradoxical mutant phenotypes and to predict a novel interaction between the BREVIS RADIX (BRX) protein and the transcription factor MONOPTEROS (MP),which turned out to be critical for the maintenance of the root meristem. On the same subcellular scale, another study in the monocot model Brachypodium dystachion (Brachypodium) revealed an alternative wiring of auxin-ethylene crosstalk as compared to Arabidopsis. In the latter, increasing interference with auxin biosynthesis results in progressively shorter roots. By contrast, a hypomorphic Brachypodium mutant isolated in this study in an enzyme of the auxin biosynthesis pathway displayed a dramatically longer seminal root. Our morphometric analysis confirmed that more anisotropic cells (thinner and longer) are principally responsible for the mutant root phenotype. Further characterization pointed towards an inverted regulatory logic in the relation between ethylene signaling and auxin biosynthesis in Brachypodium as compared to Arabidopsis, which explains the phenotypic discrepancy. Finally, the morphometric analysis of hypocotyl secondary growth that we applied in this study was performed with the image-processing pipeline of our quantitative histology method. During its secondary growth, the hypocotyl reorganizes its primary bilateral symmetry to a radial symmetry of highly specialized tissues comprising several thousand cells, starting with a few dozens. However, such a scale only permits observations in thin cross-sections, severely hampering a comprehensive analysis of the morphodynamics involved. Our quantitative histology strategy overcomes this limitation. We acquired hypocotyl cross-sections from tiled high-resolution images and extracted their information content using custom high-throughput image processing and segmentation. Coupled with an automated cell type recognition algorithm, it allows precise quantitative characterization of vascular development and reveals developmental patterns that were not evident from visual inspection, for example the steady interspace distance of the phloem poles. Further analyses indicated a change in growth anisotropy of cambial and phloem cells, which appeared in phase with the expansion of xylem. Combining genetic tools and computational modeling, we showed that the reorientation of growth anisotropy axis of peripheral tissue layers only occurs when the growth rate of central tissue is higher than the peripheral one. This was confirmed by the calculation of the ratio of the growth rate xylem to phloem throughout secondary growth. High ratios are indeed observed and concomitant with the homogenization of cambium anisotropy. These results suggest a self-organization mechanism, promoted by a gradient of division in the cambium that generates a pattern of mechanical constraints. This, in turn, reorients the growth anisotropy of peripheral tissues to sustain the secondary growth.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Nanoparticles (NPs) have gained a lot of interest in recent years due to their huge potential for applications in industry and medicine. Their unique properties offer a large number of attractive possibilities in the biomedical field, providing innovative tools for diagnosis of diseases and for novel therapies. Nevertheless, a deep understanding of their interactions with living tissues and the knowledge about their possible effects in the human body are necessary for the safe use of nanoparticulate formulations. The aim of this PhD project was to study in detail the interactions of therapeutic NPs with living cells, including cellular uptake and release, cellular localization and transport across the cell layers. Moreover, the effects of NPs on the cellular metabolic processes were determined using adapted in vitro assays. We evaluated the biological effect of several NPs potentially used in the biomedical field, including titanium dioxide (Ti02) NPs, 2-sized fluorescent silica NPs, ultrasmall superparamagnetic iron oxide (USPIO) NPs, either uncoated or coated with oleic acid or with polyvinylamine (aminoPVA) and poly(lactic-co-glycolic acid) - polyethylene-oxide (PLGA-PEO) NPs. We have found that the NPs were internalized by the cells, depending on their size, chemical composition, surface coating and also depending on the cell line considered. The uptake of aminoPVA-coated USPIO NPs by endothelial cells was enhanced in the presence of an external magnetic field. None of the tested USPIO NPs and silica NPs was transported across confluent kidney cell layers or brain endothelial cell layers, even in the presence of a magnetic field. However, in an original endothelium-glioblastoma barrier model which was developed, uncoated USPIO NPs were directly transferred from endothelial cells to glioblastoma cells. Following uptake, Ti02 NPs and uncoated USPIO NPs were released by the kidney cells, but not by the endothelial cells. Furthermore, these NPs induced an oxidative stress and autophagy in brain endothelial cells, possibly associated with their enhanced agglomeration in cell medium. A significant DNA damage was found in brain endothelial cells after their exposure to TiO2NPs. Altogether these results extend the existing knowledge about the effects of NPs on living cells with regard to their physicochemical characteristics and provide interesting tools for further investigation. The development of the in vitro toxicological assays with a special consideration for risk evaluation aims to reduce the use of animal experiments. -Les nanoparticules (NPs) présentent beaucoup d'intérêt dans le domaine biomédical et industriel. Leurs propriétés uniques offrent un grand nombre de possibilités de solutions innovantes pour le diagnostique et la thérapie. Cependant, pour un usage sûr des NPs il est nécessaire d'acquérir une connaissance approfondie des mécanismes d'interactions des NPs avec les tissus vivants et de leur effets sur le corps humain. Le but de ce projet de thèse était d'étudier en détail les mécanismes d'interactions de NPs thérapeutiques avec des cellules vivantes, en particulier les mécanismes d'internalisation cellulaire et leur subséquente sécrétion par les cellules, leur localisation cellulaire, leur transport à travers des couches cellulaires, et l'évaluation des effets de NPs sur le métabolisme cellulaire, en adaptant les méthodes existante d'évaluation cyto-toxico logique s in vitro. Pour ces expériences, les effets biologiques de nanoparticules d'intérêt thérapeutique, telles que des NPs d'oxyde de titane (TiO2), des NPs fluorescents de silicate de 2 tailles différentes, des NPs, d'oxyde de fer super-para-magnétiques ultra-petites (USPIO), soit non- enrobées soit enrobées d'acide oléique ou de polyvinylamine (aminoPVA), et des NPs d'acide poly(lactique-co-glycolique)-polyethylene-oxide (PLGA-PEO) ont été évalués. Les résultats ont démontré que les NPs sont internalisées par les cellules en fonction de leur taille, composition chimique, enrobage de surface, et également du type de cellules utilisées. L'internalisation cellulaire des USPIO NPs a été augmentée en présence d'un aimant externe. Aucune des NPs de fer et de silicate n'a été transportée à travers des couches de cellules épithéliales du rein ou endothéliales du cerveau, même en présence d'un aimant. Cependant, en développant un modèle original de barrière endothélium-glioblastome, un transfert direct de NPs d'oxyde de fer de cellule endothéliale à cellule de glioblastome a été démontré. A la suite de leur internalisation les NPs d'oxyde de fer et de titane sont relâchées par des cellules épithéliales du rein, mais pas des cellules endothéliales du cerveau. Dans les cellules endothéliales du cerveau ces NPs induisent en fonction de leur état d'agglomération un stress oxydatif et des mécanismes d'autophagie, ainsi que des dommages à l'ADN des cellules exposées aux NPs d'oxyde de titane. En conclusion, les résultats obtenus élargissent les connaissances sur les effets exercés par des NPs sur des cellules vivantes et ont permis de développer les outils expérimentaux pour étudier ces effets in vitro, réduisant ainsi le recours à des expériences sur animaux.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Summary: Adeno-associated virus type 2 (AAV2) is a small virus containing single-stranded DNA of approximately 4.7kb in size. Both ends of the viral genome are flanked with inverted terminal repeat sequences (ITRs), which serve as primers for viral replication. Previous work in our laboratory has shown that AAV2 DNA with ultraviolet radiation-generated crosslinks (UV-AAV2) provokes a DNA damage response in the host cell by mimicking a stalled replication fork. Infection of cells with UV-AAV2 leads to a p53-and Chk1-mediated cell cycle arrest at the G2/M border of the cell cycle. However, tumour cells lacking the tumour suppressor protein p53 cannot sustain this arrest and enter a prolonged impaired mitosis, the outcome of which is cell death. The aim of my thesis was to investigate how UV-inactivated AAV2 kilts p53-deficient cancer cells. I found that the UV-AAV2-induced DNA damage signalling induces centriole overduplication in infected cells. The virus is able to uncouple the centriole duplication cycle from the cell cycle, leading to amplified centrosome numbers. Chk1 colocalises with centrosomes in the infected cells and the centrosome overduplication is dependent on the presence of Chk1, as well as on the activities of ATR and Cdk kinases and on the G2 arrest. The UV-AAV2-induced DNA damage signalling inhibits the degradation of cyclin B 1 and securin by the anaphase promoting complex, suggesting that the spindle checkpoint is activated in these mitotic cells. Interference with the spindle checkpoint components Mad2 and BubR1 revealed that the UV-AAV2-provoked mitotic catastrophe occurs independently of spindle checkpoint function, This work shows that, in the p53 deficient cells, UV-AAV2 triggers mitotic catastrophe associated with a dramatic Chk1-dependent overduplication of centrioles and the consequent formation of multiple spindle poles in mitosis. Résumé Le virus associé à l'adénovirus type 2 (AAV2) est un petit virus contenant un simple brin d'ADN d'environ 4.7kb. Des expériences antérieures dans notre laboratoire ont montré que les liens intramoléculaires sur l'ADN de AAV2 provoqués paz l'irradiation aux ultraviolets (UV) ressemblent à une fourche de réplication bloquée, ce qui provoque une réponse aux dommages à l'ADN dans la cellule hôte. L'infection des cellules avec UV-AAV2 résulte en un arrêt du cycle cellulaire à la transition G2/M entraîné par les protéines ATR et Chk1. Cependant, les cellules tumorales auxquelles il manque le suppresseur de tumeur p53 ne peuvent pas tenir cet arrêt et entrent dans une mitose anormale et prolongée qui se terminera par la mort cellulaire. Le but de ma thèse était d'étudier comment l'AAV2 inactivé par l'irradiation UV tue les cellules cancéreuses n'ayant pas p53. Je montre ici que le signal de dommages à l'ADN induit par UV-AAV2 génère une surduplication des centrioles dans les cellules infectées. Le virus est capable de dissocier le cycle de duplication du centriole du cycle cellulaire ce qui crée un nombre amplifié de centrosomes. Chk1 est co-localisé avec le centrosome dans les cellules infectées et la swduplication du centrosome est dépendante de la présence de Chk1, de l'activité des kinases ATR et Cdk et de l'arrêt en G2 de la cellule. Le signal d'ADN endommagé induit par UV-AAV2 réprime la dégradation des protéines cycline B1 et securine par le complexe promoteur de l'anaphase (APC), ce qui suggère que le point de contrôle du fuseau mitotique est activé dans ces cellules en mitose. L'étude d'interférence avec des éléments du point de contrôle du fuseau mitotique, Mad2 et BubR1, a révélé que la catastrophe mitotique provoquée paz UV-AAV2 survient indépendamment du point de contrôle du fuseau mitotique. Ce travail montre que dans les cellules déficientes en p53, UV-AAV2 induit une catastrophe mitotique associée à une surduplication des centrioles dépendant de Chk1 et ayant pour conséquence dramatique la formation de multiples fuseaux mitotiques dans la cellule en mitose.