394 resultados para Cardiac defects
Resumo:
In patients undergoing non-cardiac surgery, cardiac events are the most common cause of perioperative morbidity and mortality. It is often difficult to choose adequate cardiologic examinations before surgery. This paper, inspired by the guidelines of the European and American societies of cardiology (ESC, AHA, ACC), discusses the place of standard ECG, echocardiography, treadmill or bicycle ergometer and pharmacological stress testing in preoperative evaluations. The role of coronary angiography and prophylactic revascularization will also be discussed. Finally, we provide a decision tree which will be helpful to both general practitioners and specialists.
Resumo:
BACKGROUND: The general proficiency in physical diagnostic skills seems to be declining in relation to the development of new technologies. The few studies that have examined this question have invariably used recordings of cardiac events obtained from patients. However, this type of evaluation may not correlate particularly well with bedside skills. Our objectives were 1) To compare the cardiac auscultatory skills of physicians in training with those of experienced cardiologists by using real patients to test bedside diagnostic skills. 2) To evaluate the impact of a five-month bedside cardiac auscultation training program. METHODS: 1) In an academic primary care center, 20 physicians (trainees in internal medicine and family practice) and two skilled academic cardiologists listened to 33 cardiac events in 13 patients directly at bedside and identified the cardiac events by completing an open questionnaire. Heart sounds, murmurs and diagnosis were determined beforehand by an independent skilled cardiologist and were validated by echocardiography. Thirteen primary cardiologic diagnoses were possible.2) Ten of the physicians agreed to participate in a course of 45-minute sessions once a week for 5 months. After the course they listened again to the same patients (pre/post-interventional study). RESULTS: 1) The experts were the most skillful, achieving 69% recognition of heart sounds and murmurs and correct diagnoses in 62% of cases. They also heard all of the diastolic murmurs. The residents heard only 40% of the extra heart sounds and made a correct diagnosis in 24% of cases. 2) After the weekly training sessions, their mean percentage for correct diagnosis was 35% [an increase of 66% (p < 0.05)]. CONCLUSIONS: The level of bedside diagnostic skills in this relatively small group of physicians in training is indeed low, but can be improved by a course focusing on realistic bedside teaching.
Resumo:
BACKGROUND: The timing of cardiac surgery after stroke in infective endocarditis (IE) remains controversial. We examined the relationship between the timing of surgery after stroke and the incidence of in-hospital and 1-year mortalities. METHODS: Data were obtained from the International Collaboration on Endocarditis-Prospective Cohort Study of 4794 patients with definite IE who were admitted to 64 centers from June 2000 through December 2006. Multivariate logistic regression and Cox regression analyses were performed to estimate the impact of early surgery on hospital and 1-year mortality after adjustments for other significant covariates. RESULTS: Of the 857 patients with IE complicated by ischemic stroke syndromes, 198 who underwent valve replacement surgery poststroke were available for analysis. Overall, 58 (29.3%) patients underwent early surgical treatment vs 140 (70.7%) patients who underwent late surgical treatment. After adjustment for other risk factors, early surgery was not significantly associated with increased in-hospital mortality rates (odds ratio, 2.308; 95% confidence interval [CI], .942-5.652). Overall, probability of death after 1-year follow-up did not differ between 2 treatment groups (27.1% in early surgery and 19.2% in late surgery group, P = .328; adjusted hazard ratio, 1.138; 95% CI, .802-1.650). CONCLUSIONS: There is no apparent survival benefit in delaying surgery when indicated in IE patients after ischemic stroke. Further observational analyses that include detailed pre- and postoperative clinical neurologic findings and advanced imaging data (eg, ischemic stroke size), may allow for more refined recommendations on the optimal timing of valvular surgery in patients with IE and recent stroke syndromes.
Resumo:
Despite the efficacy of cardiac surgery, less invasive interventions with more uncertain long-term outcomes are increasingly challenging surgery as first-line treatment for several congenital, degenerative and ischemic cardiac diseases. The specialty must evolve if it is to ensure its future relevance. More importantly, it must evolve to ensure that future patients have access to treatments with proven long-term effectiveness. This cannot be achieved without dynamic leadership; however, our contention is that this is not enough. The demands of a modern surgical career and the importance of the task at hand are such that the serendipitous emergence of traditional charismatic leadership cannot be relied upon to deliver necessary change. We advocate systematic analysis and strategic leadership at a local, national and international level in four key areas: Clinical Care, Research, Education and Training, and Stakeholder Engagement. While we anticipate that exceptional individuals will continue to shape the future of our specialty, the creation of robust structures to deliver collective leadership in these key areas is of paramount importance.
Resumo:
Purpose: Cardiac 18F-FDG PET is considered as the gold standard to assess myocardial metabolism and infarct size. The myocardial demand for glucose can be influenced by fasting and/or following pharmacological preparation. In the rat, it has been previously shown that fasting combined with preconditioning with acipimox, a nicotinic acid derivate and lipidlowering agent, increased dramatically 18F-FDG uptake in the myocardium. Strategies aimed at reducing infarct scar are evaluated in a variety of mouse models. PET would particularly useful for assessing cardiac viability in the mouse. However, prior knowledge of the best preparation protocol is a prerequisite for accurate measurement of glucose uptake in mice. Therefore, we studied the effect of different protocols on 18F-FDG uptake in the mouse heart.Methods: Mice (n = 15) were separated into three treatment groups according to preconditioning and underwent a 18FDG PET scan. Group 1: No preconditioning (n = 3); Group 2: Overnight fasting (n = 8); and Group 3: Overnight fasting and acipimox (25mg/kg SC) (n = 4). MicroPET images were processed with PMOD to determine 18F-FDG mean standard uptake value (SUV) at 30 min for the whole left ventricle (LV) and for each region of the 17-segments AHA model. For comparisons, we used Mann-Whitney test and multilevel mixed-effects linear regression (Stata 11.0).Results: In total, 27 microPET were performed successfully in 15 animals. Overnight fasting led to a dramatic increase in LV-SUV compared to mice without preconditioning (8.6±0.7g/mL vs. 3.7±1.1g/mL, P<0.001). In addition, LV-SUV was slightly but not significantly higher in animals treated with acipimox compared to animals with overnight fasting alone (10.2±0.5 g/mL, P = 0.06). Fastening increased segmental SUV by 5.1±0.5g/mL as compared to free-feeding mice (from 3.7±0.8g/mL to 8.8±0.4g/mL, P<0.001); segmental-SUV also significantly increased after administration of acipimox (from 8.8±0.4g/mL to 10.1±0.4g/mL, P<0.001).Conclusion: Overnight fasting led to myocardial glucose deprivation and increases 18F-FDG myocardial uptake. Additional administration of acipimox enhances myocardial 18F-FDG uptake, at least at the segmental level. Thus, preconditioning with acipimox may provide better image quality that may help for assessing segmental myocardial metabolism.
Resumo:
Postmortem imaging is increasingly used in forensic practice in cases of natural deaths related to cardiovascular diseases, which represent the most common causes of death in developed countries. While radiological examination is generally considered to be a good complement for conventional autopsy, it was thought to have limited application in cardiovascular pathology. At present, multidetector computed tomography (MDCT), CT angiography, and cardiac magnetic resonance imaging (MRI) are used in postmortem radiological investigation of cardiovascular pathologies. This review presents the actual state of postmortem imaging for cardiovascular pathologies in cases of sudden cardiac death (SCD), taking into consideration both the advantages and limitations. The radiological evaluation of ischemic heart disease (IHD), the most frequent cause of SCD in the general population of industrialized countries, includes the examination of the coronary arteries and myocardium. Postmortem CT angiography (PMCTA) is very useful for the detection of stenoses and occlusions of coronary arteries but less so for the identification of ischemic myocardium. MRI is the method of choice for the radiological investigation of the myocardium in clinical practice, but its accessibility and application are still limited in postmortem practice. There are very few reports implicating postmortem radiology in the investigation of other causes of SCD, such as cardiomyopathies, coronary artery abnormalities, and valvular pathologies. Cardiomyopathies representing the most frequent cause of SCD in young athletes cannot be diagnosed by echocardiography, the most widely available technique in clinical practice for the functional evaluation of the heart and the detection of cardiomyopathies. PMCTA and MRI have the potential to detect advanced stages of diseases when morphological substrate is present, but these methods have yet to be sufficiently validated for postmortem cases. Genetically determined channelopathies cannot be detected radiologically. This review underlines the need to establish the role of postmortem radiology in the diagnosis of SCD.
Resumo:
Acute myocardial dysfunction is a typical manifestation of septic shock. Experimentally, the administration of endotoxin [lipopolysacharride (LPS)] to laboratory animals is frequently used to study such dysfunction. However, a majority of studies used load-dependent indexes of cardiac function [including ejection fraction (EF) and maximal systolic pressure increment (dP/dt(max))], which do not directly explore cardiac inotropism. Therefore, we evaluated the direct effects of LPS on myocardial contractility, using left ventricular (LV) pressure-volume catheters in mice. Male BALB/c mice received an intraperitoneal injection of E. coli LPS (1, 5, 10, or 20 mg/kg). After 2, 6, or 20 h, cardiac function was analyzed in anesthetized, mechanically ventilated mice. All doses of LPS induced a significant drop in LV stroke volume and a trend toward reduced cardiac output after 6 h. Concomitantly, there was a significant decrease of LV preload (LV end-diastolic volume), with no apparent change in LV afterload (evaluated by effective arterial elastance and systemic vascular resistance). Load-dependent indexes of LV function were markedly reduced at 6 h, including EF, stroke work, and dP/dt(max). In contrast, there was no reduction of load-independent indexes of LV contractility, including end-systolic elastance (ejection phase measure of contractility) and the ratio dP/dt(max)/end-diastolic volume (isovolumic phase measure of contractility), the latter showing instead a significant increase after 6 h. All changes were transient, returning to baseline values after 20 h. Therefore, the alterations of cardiac function induced by LPS are entirely due to altered loading conditions, but not to reduced contractility, which may instead be slightly increased.
Resumo:
OBJECTIVE: To examine the relationship of early serum procalcitonin (PCT) levels with the severity of post-cardiac arrest syndrome (PCAS), long-term neurological recovery and the risk of early-onset infections in patients with coma after cardiac arrest (CA) treated with therapeutic hypothermia (TH). METHODS: A prospective cohort of adult comatose CA patients treated with TH (33°C, for 24h) admitted to the medical/surgical intensive care unit, Lausanne University Hospital, was studied. Serum PCT was measured early after CA, at two time-points (days 1 and 2). The SOFA score was used to quantify the severity of PCAS. Diagnosis of early-onset infections (within the first 7 days of ICU stay) was made after review of clinical, radiological and microbiological data. Neurological recovery at 3 months was assessed with Cerebral Performance Categories (CPC), and was dichotomized as favorable (CPC 1-2) vs. unfavorable (CPC 3-5). RESULTS: From December 2009 to April 2012, 100 patients (median age 64 [interquartile range 55-73] years, median time from collapse to ROSC 20 [11-30]min) were studied. Peak PCT correlated with SOFA score at day 1 (Spearman's R=0.44, p<0.0001) and was associated with neurological recovery at 3 months (peak PCT 1.08 [0.35-4.45]ng/ml in patients with CPC 1-2 vs. 3.07 [0.89-9.99] ng/ml in those with CPC 3-5, p=0.01). Peak PCT did not differ significantly between patients with early-onset vs. no infections (2.14 [0.49-6.74] vs. 1.53 [0.46-5.38]ng/ml, p=0.49). CONCLUSIONS: Early elevations of serum PCT levels correlate with the severity of PCAS and are associated with worse neurological recovery after CA and TH. In contrast, elevated serum PCT did not correlate with early-onset infections in this setting.
Resumo:
Acute myocarditis was until recently one of the most difficult diagnoses in cardiology. The spectrum of signs and symptoms is very wide, the usual non-invasive tests lack specificity and the myocardial biopsy is only performed in a minority of cases to confirm the diagnosis. Due to its unique ability to directly image myocardial necrosis, fibrosis and oedema, cardiac magnetic resonance (CMR) is now considered the primary tool for noninvasive assessment of patients with suspected myocarditis. CMR is also useful for monitoring disease activity under treatment. Myocarditis has been associated with the development of dilated cardiomyopathy; CMR could play a role in the follow-up of such cases to detect the progression toward a dilatative phenotype. Precise mapping of myocardial lesions with cardiac MRI is invaluable to guide myocardial biopsy and increase its diagnostic yield by improving sensitivity.
Resumo:
BACKGROUND: Tropomyosin (TM), an essential actin-binding protein, is central to the control of calcium-regulated striated muscle contraction. Although TPM1alpha (also called alpha-TM) is the predominant TM isoform in human hearts, the precise TM isoform composition remains unclear. METHODS AND RESULTS: In this study, we quantified for the first time the levels of striated muscle TM isoforms in human heart, including a novel isoform called TPM1kappa. By developing a TPM1kappa-specific antibody, we found that the TPM1kappa protein is expressed and incorporated into organized myofibrils in hearts and that its level is increased in human dilated cardiomyopathy and heart failure. To investigate the role of TPM1kappa in sarcomeric function, we generated transgenic mice overexpressing cardiac-specific TPM1kappa. Incorporation of increased levels of TPM1kappa protein in myofilaments leads to dilated cardiomyopathy. Physiological alterations include decreased fractional shortening, systolic and diastolic dysfunction, and decreased myofilament calcium sensitivity with no change in maximum developed tension. Additional biophysical studies demonstrate less structural stability and weaker actin-binding affinity of TPM1kappa compared with TPM1alpha. CONCLUSIONS: This functional analysis of TPM1kappa provides a possible mechanism for the consequences of the TM isoform switch observed in dilated cardiomyopathy and heart failure patients.
Resumo:
Some chronic diseases--like renal failure, liver insufficiency, chronic lung disease, cardiac involvement, diabetes mellitus, asplenia--present limited defects of the immune system and/or a higher risk of infection; therefore, patients with such pathologies should get selective vaccinations. The efficacy of immunization decreases with disease progression; for this reason, these patients should be immunized as soon as possible. At the beginning of their disease, these patients do not need a specialized treatment and are followed by the general practitioner alone who is in charge of immunizing them as well as contact people of any immunocompromised patient. OFSP's regular vaccinations programme is recommended, as well as selective vaccinations against influenza, pneumococci and viral hepatitis, depending on the underlying chronic disease.
Resumo:
BACKGROUND: Sedation and therapeutic hypothermia (TH) delay neurological responses and might reduce the accuracy of clinical examination to predict outcome after cardiac arrest (CA). We examined the accuracy of quantitative pupillary light reactivity (PLR), using an automated infrared pupillometry, to predict outcome of post-CA coma in comparison to standard PLR, EEG, and somato-sensory evoked potentials (SSEP). METHODS: We prospectively studied over a 1-year period (June 2012-June 2013) 50 consecutive comatose CA patients treated with TH (33 °C, 24 h). Quantitative PLR (expressed as the % of pupillary response to a calibrated light stimulus) and standard PLR were measured at day 1 (TH and sedation; on average 16 h after CA) and day 2 (normothermia, off sedation: on average 46 h after CA). Neurological outcome was assessed at 90 days with Cerebral Performance Categories (CPC), dichotomized as good (CPC 1-2) versus poor (CPC 3-5). Predictive performance was analyzed using area under the ROC curves (AUC). RESULTS: Patients with good outcome [n = 23 (46 %)] had higher quantitative PLR than those with poor outcome [n = 27; 16 (range 9-23) vs. 10 (1-30) % at day 1, and 20 (13-39) vs. 11 (1-55) % at day 2, both p < 0.001]. Best cut-off for outcome prediction of quantitative PLR was <13 %. The AUC to predict poor outcome was higher for quantitative than for standard PLR at both time points (day 1, 0.79 vs. 0.56, p = 0.005; day 2, 0.81 vs. 0.64, p = 0.006). Prognostic accuracy of quantitative PLR was comparable to that of EEG and SSEP (0.81 vs. 0.80 and 0.73, respectively, both p > 0.20). CONCLUSIONS: Quantitative PLR is more accurate than standard PLR in predicting outcome of post-anoxic coma, irrespective of temperature and sedation, and has comparable prognostic accuracy than EEG and SSEP.
Resumo:
Objectives: This study analyses the long term cardiac and neurological outcome of patients with cardiac rhabdomyoma (CR) in order to allow comprehensive prenatal counselling. Because of the relative rarity of the disease, there is paucity of data concerning the outcome of patients with CR. Methods: A retrospective study including all cases with echocardiographic diagnosis of CR encountered between April 1986 and August 2006. Results: Of 24 CR patients identified, 7 were diagnosed in-utero at a gestational age (GA) between 28-35 weeks and 17 postnatally between 10 days and 5 years. 14 had multiple CR and 10 had one/two CR. The CRs were situated predominantly in the LV (70%), RV (52%) and IVS (48%) and to a lesser extent in the atria (13%) and pericardium (4%). Follow-up echocardiography in. 18'show\'ld complete postnatal regression of CR in 3, partial regression in 13 and no change in 2. Cardiac complications were encountered in 5 patients, 1 with WPW syndrome and SVT requiring anti-arrhythmic therapy, 1 with sub-aortic obstruction needing surgical intervention and 3 with occasional bouts of paroxysmal SVT. Long-term follow-up revealed tuberous sclerosis of Bourneville (TSB) as definite diagnosIs in 22 (92%), complicated by epilepsy in 16 (67%) and developmental delay in 14 (64%). Conclusions: CR generally regresses after birth and after the high risk perinatal period cardiac related problems are rare. The relatively poor neurodevelopmental outcome of the almost always associated TSB however should form a dominating aspect of the prenatal counselling of parents whose fetuses are diagnosed with this rare disease.
Resumo:
The purpose of this study was to investigate changes in post-exercise heart rate recovery (HRR) and heart rate variability (HRV) during an overload-tapering paradigm in marathon runners and examine their relationship with running performance. 9 male runners followed a training program composed of 3 weeks of overload followed by 3 weeks of tapering (-33±7%). Before and after overload and during tapering they performed an exhaustive running test (Tlim). At the end of this test, HRR variables (e.g. HRR during the first 60 s; HRR60 s) and vagal-related HRV indices (e.g. RMSSD5-10 min) were examined. Tlim did not change during the overload training phase (603±105 vs. 614±132 s; P=0.992), but increased (727±185 s; P=0.035) during the second week of tapering. Compared with overload, RMSSD5-10 min (7.6±3.3 vs. 8.6±2.9 ms; P=0.045) was reduced after the 2(nd) week of tapering. During tapering, the improvements in Tlim were negatively correlated with the change in HRR60 s (r=-0.84; P=0.005) but not RMSSD5-10 min (r=-0.21; P=0.59). A slower HRR during marathon tapering may be indicative of improved performance. In contrast, the monitoring of changes in HRV as measured in the present study (i.e. after exercise on a single day), may have little or no additive value.