178 resultados para CALORIMETRIC DATA
Resumo:
since 1999 data from pulmonary hypertension (PH) patients from all PH centres in Switzerland were prospectively collected. We analyse the epidemiological aspects of these data. PH was defined as a mean pulmonary artery pressure of >25 mm Hg at rest or >30 mm Hg during exercise. Patients with pulmonary arterial hypertension (PAH), PH associated with lung diseases, PH due to chronic thrombotic and/or embolic disease (CTEPH), or PH due to miscellaneous disorders were registered. Data from adult patients included between January 1999 and December 2004 were analysed. 250 patients were registered (age 58 +/- 16 years, 104 (41%) males). 152 patients (61%) had PAH, 73 (29%) had CTEPH and 18 (7%) had PH associated with lung disease. Patients <50 years (32%) were more likely to have PAH than patients >50 years (76% vs. 53%, p <0.005). Twenty-four patients (10%) were lost to followup, 58 patients (26%) died and 150 (66%) survived without transplantation or thrombendarterectomy. Survivors differed from patients who died in the baseline six-minute walking distance (400 m [300-459] vs. 273 m [174-415]), the functional impairment (NYHA class III/IV 86% vs. 98%), mixed venous saturation (63% [57-68] vs. 56% [50-61]) and right atrial pressure (7 mm Hg [4-11] vs. 11 mm Hg [4-18]). PH is a disease affecting adults of all ages. The management of these patients in specialised centres guarantees a high quality of care. Analysis of the registry data could be an instrument for quality control and might help identify weak points in assessment and treatment of these patients.
Resumo:
OBJECT: To study a scan protocol for coronary magnetic resonance angiography based on multiple breath-holds featuring 1D motion compensation and to compare the resulting image quality to a navigator-gated free-breathing acquisition. Image reconstruction was performed using L1 regularized iterative SENSE. MATERIALS AND METHODS: The effects of respiratory motion on the Cartesian sampling scheme were minimized by performing data acquisition in multiple breath-holds. During the scan, repetitive readouts through a k-space center were used to detect and correct the respiratory displacement of the heart by exploiting the self-navigation principle in image reconstruction. In vivo experiments were performed in nine healthy volunteers and the resulting image quality was compared to a navigator-gated reference in terms of vessel length and sharpness. RESULTS: Acquisition in breath-hold is an effective method to reduce the scan time by more than 30 % compared to the navigator-gated reference. Although an equivalent mean image quality with respect to the reference was achieved with the proposed method, the 1D motion compensation did not work equally well in all cases. CONCLUSION: In general, the image quality scaled with the robustness of the motion compensation. Nevertheless, the featured setup provides a positive basis for future extension with more advanced motion compensation methods.
Resumo:
Genes underlying mutant phenotypes can be isolated by combining marker discovery, genetic mapping and resequencing, but a more straightforward strategy for mapping mutations would be the direct comparison of mutant and wild-type genomes. Applying such an approach, however, is hampered by the need for reference sequences and by mutational loads that confound the unambiguous identification of causal mutations. Here we introduce NIKS (needle in the k-stack), a reference-free algorithm based on comparing k-mers in whole-genome sequencing data for precise discovery of homozygous mutations. We applied NIKS to eight mutants induced in nonreference rice cultivars and to two mutants of the nonmodel species Arabis alpina. In both species, comparing pooled F2 individuals selected for mutant phenotypes revealed small sets of mutations including the causal changes. Moreover, comparing M3 seedlings of two allelic mutants unambiguously identified the causal gene. Thus, for any species amenable to mutagenesis, NIKS enables forward genetics without requiring segregating populations, genetic maps and reference sequences.
Resumo:
Recently, kernel-based Machine Learning methods have gained great popularity in many data analysis and data mining fields: pattern recognition, biocomputing, speech and vision, engineering, remote sensing etc. The paper describes the use of kernel methods to approach the processing of large datasets from environmental monitoring networks. Several typical problems of the environmental sciences and their solutions provided by kernel-based methods are considered: classification of categorical data (soil type classification), mapping of environmental and pollution continuous information (pollution of soil by radionuclides), mapping with auxiliary information (climatic data from Aral Sea region). The promising developments, such as automatic emergency hot spot detection and monitoring network optimization are discussed as well.
Resumo:
Les décisions de gestion des eaux souterraines doivent souvent être justiffées par des modèles quantitatifs d'aquifères qui tiennent compte de l'hétérogénéité des propriétés hydrauliques. Les aquifères fracturés sont parmi les plus hétérogènes et très difficiles à étudier. Dans ceux-ci, les fractures connectées, d'ouverture millimètrique, peuvent agir comme conducteurs hydrauliques et donc créer des écoulements très localisés. Le manque général d'informations sur la distribution spatiale des fractures limite la possibilité de construire des modèles quantitatifs de flux et de transport. Les données qui conditionnent les modèles sont généralement spatialement limitées, bruitées et elles ne représentent que des mesures indirectes de propriétés physiques. Ces limitations aux données peuvent être en partie surmontées en combinant différents types de données, telles que les données hydrologiques et de radar à pénétration de sol plus commun ément appelé géoradar. L'utilisation du géoradar en forage est un outil prometteur pour identiffer les fractures individuelles jusqu'à quelques dizaines de mètres dans la formation. Dans cette thèse, je développe des approches pour combiner le géoradar avec les données hydrologiques affn d'améliorer la caractérisation des aquifères fracturés. Des investigations hydrologiques intensives ont déjà été réalisées à partir de trois forage adjacents dans un aquifère cristallin en Bretagne (France). Néanmoins, la dimension des fractures et la géométrie 3-D des fractures conductives restaient mal connue. Affn d'améliorer la caractérisation du réseau de fractures je propose dans un premier temps un traitement géoradar avancé qui permet l'imagerie des fractures individuellement. Les résultats montrent que les fractures perméables précédemment identiffées dans les forages peuvent être caractérisées géométriquement loin du forage et que les fractures qui ne croisent pas les forages peuvent aussi être identiffées. Les résultats d'une deuxième étude montrent que les données géoradar peuvent suivre le transport d'un traceur salin. Ainsi, les fractures qui font partie du réseau conductif et connecté qui dominent l'écoulement et le transport local sont identiffées. C'est la première fois que le transport d'un traceur salin a pu être imagé sur une dizaines de mètres dans des fractures individuelles. Une troisième étude conffrme ces résultats par des expériences répétées et des essais de traçage supplémentaires dans différentes parties du réseau local. En outre, la combinaison des données de surveillance hydrologique et géoradar fournit la preuve que les variations temporelles d'amplitude des signaux géoradar peuvent nous informer sur les changements relatifs de concentrations de traceurs dans la formation. Par conséquent, les données géoradar et hydrologiques sont complémentaires. Je propose ensuite une approche d'inversion stochastique pour générer des modèles 3-D de fractures discrètes qui sont conditionnés à toutes les données disponibles en respectant leurs incertitudes. La génération stochastique des modèles conditionnés par géoradar est capable de reproduire les connexions hydrauliques observées et leur contribution aux écoulements. L'ensemble des modèles conditionnés fournit des estimations quantitatives des dimensions et de l'organisation spatiale des fractures hydrauliquement importantes. Cette thèse montre clairement que l'imagerie géoradar est un outil utile pour caractériser les fractures. La combinaison de mesures géoradar avec des données hydrologiques permet de conditionner avec succès le réseau de fractures et de fournir des modèles quantitatifs. Les approches présentées peuvent être appliquées dans d'autres types de formations rocheuses fracturées où la roche est électriquement résistive.
Resumo:
Despite the advancement of phylogenetic methods to estimate speciation and extinction rates, their power can be limited under variable rates, in particular for clades with high extinction rates and small number of extant species. Fossil data can provide a powerful alternative source of information to investigate diversification processes. Here, we present PyRate, a computer program to estimate speciation and extinction rates and their temporal dynamics from fossil occurrence data. The rates are inferred in a Bayesian framework and are comparable to those estimated from phylogenetic trees. We describe how PyRate can be used to explore different models of diversification. In addition to the diversification rates, it provides estimates of the parameters of the preservation process (fossilization and sampling) and the times of speciation and extinction of each species in the data set. Moreover, we develop a new birth-death model to correlate the variation of speciation/extinction rates with changes of a continuous trait. Finally, we demonstrate the use of Bayes factors for model selection and show how the posterior estimates of a PyRate analysis can be used to generate calibration densities for Bayesian molecular clock analysis. PyRate is an open-source command-line Python program available at http://sourceforge.net/projects/pyrate/.