226 resultados para Action refinement


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cancer is the second cause of death after cardio-vascular diseases in economically developed countries. Two of the most commonly used anti-cancer therapies are chemo and radiotherapy. Despite the remarkable advances made in term of delivery and specificity of these two anti-tumor regimens, their toxicity towards healthy tissue remains a limitation. A promising approach to overcome this obstacle would be the utilization of therapeutic peptides that specifically augment the sensitivity of tumoral cells to treatments. Lower therapeutical doses would then be required to kill malignant cells, limiting toxic effects on healthy tissues. It was previously shown in our laboratory that the caspase-3 generated fragment N2 of RasGAP is able to potentiate the genotoxin-induced apoptosis selectively in cancer cells. In this work we show that fragment N2 strictly requires a cytoplasmic localization to deliver its pro-apoptotic effect in genotoxin-treated cancer cells. The tumor sensitizing capacity of fragment N2 was found to reside within the 10 amino acid sequence 317-326. Our laboratory earlier demonstrated that a peptide corresponding to amino acids 317 to 326 of RasGAP fused to the TAT cell permeable moiety, called TAT-RasGAP317.326, is able to sensitize cancer cells, but not normal cells, to genotoxin-induced apoptosis. In the present study we describe the capacity of TAT-RasGAP 317.326 to sensitize tumors to both chemo and radiotherapy in an in vivo mouse model. The molecular mechanism underlying the TAT-RasGAP 317.326-mediated sensitization starts now to be elucidated. We demonstrate that G3BP1, an endoribonuclease binding to amino acids 317-326 of RasGAP, is not involved in the sensitization mechanism. We also provide evidence showing that TAT-RasGAP3 17-326 potentiates the genotoxin-mediated activation of Bax in a tBid-dependent manner. Altogether our results show that TAT-RasGAP 317.326 could be potentially used in cancer therapy as sensitizer, in order to improve the efficacy of chemo and radiotherapy and prolong the life expectancy of cancer patients. Moreover, the understanding of the TAT-RasGAP317.326 mode of action might help to unravel the mechanisms by which cancer cells resist to chemo and radiotherapy and therefore to design more targeted and efficient anti-tumoral strategies.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In eukaryotes, heat shock protein 90 (Hsp90) is an essential ATP-dependent molecular chaperone that associates with numerous client proteins. HtpG, a prokaryotic homolog of Hsp90, is essential for thermotolerance in cyanobacteria, and in vitro it suppresses the aggregation of denatured proteins efficiently. Understanding how the non-native client proteins bound to HtpG refold is of central importance to comprehend the essential role of HtpG under stress. Here, we demonstrate by yeast two-hybrid method, immunoprecipitation assays, and surface plasmon resonance techniques that HtpG physically interacts with DnaJ2 and DnaK2. DnaJ2, which belongs to the type II J-protein family, bound DnaK2 or HtpG with submicromolar affinity, and HtpG bound DnaK2 with micromolar affinity. Not only DnaJ2 but also HtpG enhanced the ATP hydrolysis by DnaK2. Although assisted by the DnaK2 chaperone system, HtpG enhanced native refolding of urea-denatured lactate dehydrogenase and heat-denatured glucose-6-phosphate dehydrogenase. HtpG did not substitute for DnaJ2 or GrpE in the DnaK2-assisted refolding of the denatured substrates. The heat-denatured malate dehydrogenase that did not refold by the assistance of the DnaK2 chaperone system alone was trapped by HtpG first and then transferred to DnaK2 where it refolded. Dissociation of substrates from HtpG was either ATP-dependent or -independent depending on the substrate, indicating the presence of two mechanisms of cooperative action between the HtpG and the DnaK2 chaperone system.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Despite large changes in salt intake, the mammalian kidney is able to maintain the extracellular sodium concentration and osmolarity within very narrow margins, thereby controlling blood volume and blood pressure. In the aldosterone-sensitive distal nephron (ASDN), aldosterone tightly controls the activities of epithelial sodium channel (ENaC) and Na,K-ATPase, the two limiting factors in establishing transepithelial sodium transport. It has been proposed that the ENaC/degenerin gene family is restricted to Metazoans, whereas the α- and β-subunits of Na,K-ATPase have homologous genes in prokaryotes. This raises the question of the emergence of osmolarity control. By exploring recent genomic data of diverse organisms, we found that: 1) ENaC/degenerin exists in all of the Metazoans screened, including nonbilaterians and, by extension, was already present in ancestors of Metazoa; 2) ENaC/degenerin is also present in Naegleria gruberi, an eukaryotic microbe, consistent with either a vertical inheritance from the last common ancestor of Eukaryotes or a lateral transfer between Naegleria and Metazoan ancestors; and 3) The Na,K-ATPase β-subunit is restricted to Holozoa, the taxon that includes animals and their closest single-cell relatives. Since the β-subunit of Na,K-ATPase plays a key role in targeting the α-subunit to the plasma membrane and has an additional function in the formation of cell junctions, we propose that the emergence of Na,K-ATPase, together with ENaC/degenerin, is linked to the development of multicellularity in the Metazoan kingdom. The establishment of multicellularity and the associated extracellular compartment ("internal milieu") precedes the emergence of other key elements of the aldosterone signaling pathway.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Homology modeling is the most commonly used technique to build a three-dimensional model for a protein sequence. It heavily relies on the quality of the sequence alignment between the protein to model and related proteins with a known three dimensional structure. Alignment quality can be assessed according to the physico-chemical properties of the three dimensional models it produces.In this work, we introduce fifteen predictors designed to evaluate the properties of the models obtained for various alignments. They consist of an energy value obtained from different force fields (CHARMM, ProsaII or ANOLEA) computed on residue selected around misaligned regions. These predictors were evaluated on ten challenging test cases. For each target, all possible ungapped alignments are generated and their corresponding models are computed and evaluated.The best predictor, retrieving the structural alignment for 9 out of 10 test cases, is based on the ANOLEA atomistic mean force potential and takes into account residues around misaligned secondary structure elements. The performance of the other predictors is significantly lower. This work shows that substantial improvement in local alignments can be obtained by careful assessment of the local structure of the resulting models.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Emotion communication research strongly focuses on the face and voice as expressive modalities, leaving the rest of the body relatively understudied. Contrary to the early assumption that body movement only indicates emotional intensity, recent studies show that body movement and posture also convey emotion specific information. However, a deeper understanding of the underlying mechanisms is hampered by a lack of production studies informed by a theoretical framework. In this research we adopted the Body Action and Posture (BAP) coding system to examine the types and patterns of body movement that are employed by 10 professional actors to portray a set of 12 emotions. We investigated to what extent these expression patterns support explicit or implicit predictions from basic emotion theory, bi-dimensional theory, and componential appraisal theory. The overall results showed partial support for the different theoretical approaches. They revealed that several patterns of body movement systematically occur in portrayals of specific emotions, allowing emotion differentiation. While a few emotions were prototypically encoded by one particular pattern, most emotions were variably expressed by multiple patterns, many of which can be explained as reflecting functional components of emotion such as modes of appraisal and action readiness. It is concluded that further work in this largely underdeveloped area should be guided by an appropriate theoretical framework to allow a more systematic design of experiments and clear hypothesis testing.