243 resultados para 174-1074
Resumo:
Peroxisome proliferator-activated receptors (PPARs) are nuclear hormone receptors that regulate the expression of many genes involved in lipid metabolism. The biological roles of PPARalpha and PPARgamma are relatively well understood, but little is known about the function of PPARbeta. To address this question, and because PPARbeta is expressed to a high level in the developing brain, we used reaggregated brain cell cultures prepared from dissociated fetal rat telencephalon as experimental model. In these primary cultures, the fetal cells initially form random aggregates, which progressively acquire a tissue-specific pattern resembling that of the brain. PPARs are differentially expressed in these aggregates, with PPARbeta being the prevalent isotype. PPARalpha is present at a very low level, and PPARgamma is absent. Cell type-specific expression analyses revealed that PPARbeta is ubiquitous and most abundant in some neurons, whereas PPARalpha is predominantly astrocytic. We chose acyl-CoA synthetases (ACSs) 1, 2, and 3 as potential target genes of PPARbeta and first analyzed their temporal and cell type-specific pattern. This analysis indicated that ACS2 and PPARbeta mRNAs have overlapping expression patterns, thus designating the ACS2 gene as a putative target of PPARbeta. Using a selective PPARbeta activator, we found that the ACS2 gene is transcriptionally regulated by PPARbeta, demonstrating a role for PPARbeta in brain lipid metabolism.
Resumo:
OBJECTIVES: The aim of this study was to evaluate the risk factors associated with Contegra graft (Medtronic Minneapolis, MN, USA) infection after reconstruction of the right ventricular outflow tract. METHODS: One hundred and six Contegra grafts were implanted between April 1999 and April 2010 for the Ross procedure (n = 46), isolated pulmonary valve replacement (n = 32), tetralogy of Fallot (n = 24), double-outlet right ventricle (n = 7), troncus arteriosus (n = 4), switch operation (n = 1) and redo of pulmonary valve replacement (n = 2). The median age of the patients was 13 years (range 0-54 years). A follow-up was completed in all cases with a median duration of 7.6 years (range 1.7-12.7 years). RESULTS: There were 3 cases of in-hospital mortality. The survival rate during 7 years was 95.7%. Despite the lifelong endocarditis prophylaxis, Contegra graft infection was diagnosed in 12 (11.3%) patients at a median time of 4.4 years (ranging from 0.4 to 8.7 years). Univariate analysis of preoperative, perioperative and postoperative variables was performed and the following risk factors for time to infection were identified: female gender with a hazard ratio (HR) of 0.19 (P = 0.042), systemic-to-pulmonary shunt (HR 6.46, P < 0.01), hypothermia (HR 0.79, P = 0.014), postoperative renal insufficiency (HR 11.97, P = 0.015) and implantation of permanent pacemaker during hospitalization (HR 5.29, P = 0.075). In 2 cases, conservative therapy was successful and, in 10 patients, replacement of the infected valve was performed. The Contegra graft was replaced by a homograft in 2 cases and by a new Contegra graft in 8 cases. Cox's proportional hazard model indicated that time to graft infection was significantly associated with tetralogy of Fallot (HR 0.06, P = 0.01), systemic-to-pulmonary shunt (HR 64.71, P < 0.01) and hypothermia (HR 0.77, P < 0.01). CONCLUSION: Contegra graft infection affected 11.3% of cases in our cohort, and thus may be considered as a frequent entity that can be predicted by both intraoperative and early postoperative factors. After the diagnosis of infection associated with the Contegra graft was confirmed, surgical treatment was the therapy of choice.
Resumo:
Peroxisome proliferator-activated receptor gamma (PPARgamma) is an essential regulator of adipocyte differentiation, maintenance, and survival. Deregulations of its functions are associated with metabolic diseases. We show here that deletion of one PPARgamma allele not only affected lipid storage but, more surprisingly, also the expression of genes involved in glucose uptake and utilization, the pentose phosphate pathway, fatty acid synthesis, lipolysis, and glycerol export as well as in IR/IGF-1 signaling. These deregulations led to reduced circulating adiponectin levels and an energy crisis in the WAT, reflected in a decrease to nearly half of its intracellular ATP content. In addition, there was a decrease in the metabolic rate and physical activity of the PPARgamma(+/-) mice, which was abolished by thiazolidinedione treatment, thereby linking regulation of the metabolic rate and physical activity to PPARgamma. It is likely that the PPARgamma(+/-) phenotype was due to the observed WAT dysfunction, since the gene expression profiles associated with metabolic pathways were not affected either in the liver or the skeletal muscle. These findings highlight novel roles of PPARgamma in the adipose tissue and underscore the multifaceted action of this receptor in the functional fine tuning of a tissue that is crucial for maintaining the organism in good health.
Resumo:
Ligand-gated ion channels of the Cys loop family are receptors for small amine-containing neurotransmitters. Charged amino acids are strongly conserved in the ligand-binding domain of these receptor proteins. To investigate the role of particular residues in ligand binding of the serotonin 5-HT3AS receptor (5-HT3R), glutamate amino acid residues at three different positions, Glu97, Glu224, and Glu235, in the extracellular N-terminal domain were substituted with aspartate and glutamine using site-directed mutagenesis. Wild type and mutant receptor proteins were expressed in HEK293 cells and analyzed by electrophysiology, radioligand binding, fluorescence measurements, and immunochemistry. A structural model of the ligand-binding domain of the 5-HT3R based on the acetylcholine binding protein revealed the position of the mutated amino acids. Our results demonstrate that mutations of Glu97, distant from the ligand-binding site, had little effect on the receptor, whereas mutations Glu224 and Glu235, close to the predicted binding site, are indeed important for ligand binding. Mutations E224Q, E224D, and E235Q decreased EC50 and Kd values 5-20-fold, whereas E235D was functionally expressed at a low level and had a more than 100-fold increased EC50 value. Comparison of the fluorescence properties of a fluorescein-labeled antagonist upon binding to wild type 5-HT3R and E235Q, allowed us to localize Glu235 within a distance of 1 nm around the ligand-binding site, as proposed by our model.
Resumo:
The growth of any solid tumor depends on angiogenesis. Vascular endothelial growth factor (VEGF) plays a prominent role in vesical tumor angiogenesis regulation. Previous studies have shown that the peroxisome proliferator-activated receptor gamma (PPARgamma) was involved in the angiogenesis process. Here, we report for the first time that in two different human bladder cancer cell lines, RT4 (derived from grade I tumor) and T24 (derived from grade III tumor), VEGF (mRNA and protein) is differentially up-regulated by the three PPAR isotypes. Its expression is increased by PPARalpha, beta, and gamma in RT4 cells and only by PPARbeta in T24 cells via a transcriptional activation of the VEGF promoter through an indirect mechanism. This effect is potentiated by an RXR (retinoid-X-receptor), selective retinoid LG10068 providing support for a PPAR agonist-specific action on VEGF expression. While investigating the downstream signaling pathways involved in PPAR agonist-mediated up-regulation of VEGF, we found that only the MEK inhibitor PD98059 reduced PPAR ligand-induced expression of VEGF. These data contribute to a better understanding of the mechanisms by which PPARs regulate VEGF expression. They may lead to a new therapeutic approach to human bladder cancer in which excessive angiogenesis is a negative prognostic factor.
Resumo:
BACKGROUND: The incidence and outcomes of respiratory viral infections in lung transplant recipients (LTR) are not well defined. The objective of this prospective study conducted from June 2008 to March 2011 was to characterise the incidence and outcomes of viral respiratory infections in LTR. METHODS: Patients were seen in three contexts: study-specific screenings covering all seasons; routine post-transplantation follow-up; and emergency visits. Nasopharyngeal specimens were collected systematically and bronchoalveolar lavage (BAL) was performed when clinically indicated. All specimens underwent testing with a wide panel of molecular assays targeting respiratory viruses. RESULTS: One hundred and twelve LTR had 903 encounters: 570 (63%) were screening visits, 124 (14%) were routine post-transplantation follow-up and 209 (23%) were emergency visits. Respiratory viruses were identified in 174 encounters, 34 of these via BAL. The incidence of infection was 0.83 per patient-year (95% CI 0.45 to 1.52). The viral infection rates upon screening, routine and emergency visits were 14%, 15% and 34%, respectively (p<0.001). Picornavirus was identified most frequently in nasopharyngeal (85/140; 60.7%) and BAL specimens (20/34; 59%). Asymptomatic viral carriage, mainly of picornaviruses, was found at 10% of screening visits. Infections were associated with transient lung function loss and high calcineurin inhibitor blood levels. The hospitalisation rate was 50% (95% CI 30% to 70.9%) for influenza and parainfluenza and 16.9% (95% CI 11.2% to 23.9%) for other viruses. Acute rejection was not associated with viral infection (OR 0.4, 95% CI 0.1 to 1.3). CONCLUSIONS: There is a high incidence of viral infection in LTR; asymptomatic carriage is rare. Viral infections contribute significantly to this population's respiratory symptomatology. No temporal association was observed between infection and acute rejection.
Resumo:
Tumor necrosis factor (TNF) ligand and receptor superfamily members play critical roles in diverse developmental and pathological settings. In search for novel TNF superfamily members, we identified a murine chromosomal locus that contains three new TNF receptor-related genes. Sequence alignments suggest that the ligand binding regions of these murine TNF receptor homologues, mTNFRH1, -2 and -3, are most homologous to those of the tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) receptors. By using a number of in vitro ligand-receptor binding assays, we demonstrate that mTNFRH1 and -2, but not mTNFRH3, bind murine TRAIL, suggesting that they are indeed TRAIL receptors. This notion is further supported by our demonstration that both mTNFRH1:Fc and mTNFRH2:Fc fusion proteins inhibited mTRAIL-induced apoptosis of Jurkat cells. Unlike the only other known murine TRAIL receptor mTRAILR2, however, neither mTNFRH2 nor mTNFRH3 has a cytoplasmic region containing the well characterized death domain motif. Coupled with our observation that overexpression of mTNFRH1 and -2 in 293T cells neither induces apoptosis nor triggers NFkappaB activation, we propose that the mTnfrh1 and mTnfrh2 genes encode the first described murine decoy receptors for TRAIL, and we renamed them mDcTrailr1 and -r2, respectively. Interestingly, the overall sequence structures of mDcTRAILR1 and -R2 are quite distinct from those of the known human decoy TRAIL receptors, suggesting that the presence of TRAIL decoy receptors represents a more recent evolutionary event.
Resumo:
The calcium-binding protein calretinin has emerged as a useful marker for the identification of mesotheliomas of the epithelioid and mixed types, but its putative role in tumor development has not been addressed previously. Although exposure to asbestos fibers is considered the main cause of mesothelioma, undoubtedly, not all mesothelioma patients have a history of asbestos exposure. The question as to whether the SV40 virus is involved as a possible co-factor is still highly debated. Here we show that increased expression of SV40 early gene products in the mesothelial cell line MeT-5A induces the expression of calretinin and that elevated calretinin levels strongly correlate with increased resistance to asbestos cytotoxicity. Calretinin alone mediates a significant part of this protective effect because cells stably transfected with calretinin cDNA were clearly more resistant to the toxic effects of crocidolite than mock-transfected control cells. Down-regulation of calretinin by antisense methods restored the sensitivity to asbestos toxicity to a large degree. The protective effect observed in clones with higher calretinin expression levels could be eliminated by phosphatidylinositol 3-kinase (PI3K) inhibitors, implying an important role for the PI3K/AKT signaling (survival) pathway in mediating the protective effect. Up-regulation of calretinin, resulting from either asbestos exposure or SV40 oncoproteins, may be a common denominator that leads to increased resistance to asbestos cytotoxicity and thereby contributes to mesothelioma carcinogenesis.
Resumo:
Cet article est un compte-rendu du colloque "Evolution in Structured Population", tenu du 14 au 16 Septembre 1994 à l'Université de Lausanne. Consacré aux causes écologiques et conséquences évolutives d'horizons divers (zoologie, botanique, anthropologie, mathématiques), utilisant des approches variées, aussi bien empiriques que théoriques. Plusieurs exemples concrets de structurations génétiques de populations naturelles ont été documentés, et leurs causes analysées. Celles-ci sont variées, certaines étant extrinsèques à la biologie des espèces concernées (distances géographique, barrières écologiques, etc), d'autres intrinsèques (stratégies de reproduction, mutations chromosomiques). Les outils quantitatifs les plus largement utilisés pour analyser ces structures restent les F-statistiques de Whright; elles ont néanmoins fait l'objet de plusieurs critiques: d'une part, elles n'exploitent pas toute l'information disponible (certains orateurs ont d'ailleurs proposé diverses améliorations dans ce sens); d'autre part, les hypothèses qui sous-tendent leur interprétation conventionelle (en particulier l'hypothèse de populations à l'équilibre) sont régulièrement violées. Plusieurs des travaux présentés se sont précisément intéressés aux situations de déséquilibre et à leurs conséquences sur la dynamique et l'évolution des populations. Parmi celles ci: l'effet d'extinctions démiques sur les stratégies de dispersion des organismes et la structure génétique de leurs métapopulations, l'inadéquation du modèle classique de métapopulation, dit modèle en île (les modèles de diffusion ou de "pas japonais" (stepping stone) semblent généralement préférables), et le rôle de la "viscosité" des populations, en particulier en relation avec la sélection de parentèle et l'évolution de structures sociales. Le rôle important d'événements historiques sur les structures actuelles a été souligné, notamment dans le cadre de contacts secondaires entre populations hautement différenciées, leur introgression possible et la biogéographie de taxons vicariants. Parmi les problèmes récurrents notés: l'identification de l'unité panmictique, l'échelle de mesure spatiale appropriée, et les difficulté d'estimation des taux de migration et de flux de gènes. Plusieurs auteurs ont relevé la nécessité d'études biologiques de détail: les structures génétiques n'ont d'intérêt que dans la mesure où elles peuvent être situées dans un contexte écologique et évolutif précis. Ce point a été largement illustré dans le cadre des realtions entre structures génétiques et stratégies de reproduction/dispersion.
Resumo:
Acid-sensing ion channels (ASICs) are neuronal Na(+)-selective channels that are transiently activated by extracellular acidification. ASICs are involved in fear and anxiety, learning, neurodegeneration after ischemic stroke, and pain sensation. The small molecule 2-guanidine-4-methylquinazoline (GMQ) was recently shown to open ASIC3 at physiological pH. We have investigated the mechanisms underlying this effect and the possibility that GMQ may alter the function of other ASICs besides ASIC3. GMQ shifts the pH dependence of activation to more acidic pH in ASIC1a and ASIC1b, whereas in ASIC3 this shift goes in the opposite direction and is accompanied by a decrease in its steepness. GMQ also induces an acidic shift of the pH dependence of inactivation of ASIC1a, -1b, -2a, and -3. As a consequence, the activation and inactivation curves of ASIC3 but not other ASICs overlap in the presence of GMQ at pH 7.4, thereby creating a window current. At concentrations >1 mm, GMQ decreases maximal peak currents by reducing the unitary current amplitude. Mutation of residue Glu-79 in the palm domain of ASIC3, previously shown to be critical for channel opening by GMQ, disrupted the GMQ effects on inactivation but not activation. This suggests that this residue is involved in the consequences of GMQ binding rather than in the binding interaction itself. This study describes the mechanisms underlying the effects of a novel class of ligands that modulate the function of all ASICs as well as activate ASIC3 at physiological pH.
Resumo:
Exocytosis from synaptic vesicles is driven by stepwise formation of a tight alpha-helical complex between the fusing membranes. The complex is composed of the three SNAREs: synaptobrevin 2, SNAP-25, and syntaxin 1a. An important step in complex formation is fast binding of vesicular synaptobrevin to the preformed syntaxin 1.SNAP-25 dimer. Exactly how this step relates to neurotransmitter release is not well understood. Here, we combined different approaches to gain insights into this reaction. Using computational methods, we identified a stretch in synaptobrevin 2 that may function as a coiled coil "trigger site." This site is also present in many synaptobrevin homologs functioning in other trafficking steps. Point mutations in this stretch inhibited binding to the syntaxin 1.SNAP-25 dimer and slowed fusion of liposomes. Moreover, the point mutations severely inhibited secretion from chromaffin cells. Altogether, this demonstrates that the trigger site in synaptobrevin is crucial for productive SNARE zippering.
Resumo:
P-selectin glycoprotein ligand-1 (PSGL-1) interacts with selectins to support leukocyte rolling along vascular wall. L- and P-selectin bind to N-terminal tyrosine sulfate residues and to core-2 O-glycans attached to Thr-57, whereas tyrosine sulfation is not required for E-selectin binding. PSGL-1 extracellular domain contains decameric repeats, which extend L- and P-selectin binding sites far above the plasma membrane. We hypothesized that decamers may play a role in regulating PSGL-1 interactions with selectins. Chinese hamster ovary cells expressing wild-type PSGL-1 or PSGL-1 molecules exhibiting deletion or substitution of decamers with the tandem repeats of platelet glycoprotein Ibalpha were compared in their ability to roll on selectins and to bind soluble L- or P-selectin. Deletion of decamers abrogated soluble L-selectin binding and cell rolling on L-selectin, whereas their substitution partially reversed these diminutions. P-selectin-dependent interactions with PSGL-1 were less affected by decamer deletion. Videomicroscopy analysis showed that decamers are required to stabilize L-selectin-dependent rolling. Importantly, adhesion assays performed on recombinant decamers demonstrated that they directly bind to E-selectin and promote slow rolling. Our results indicate that the role of decamers is to extend PSGL-1 N terminus far above the cell surface to support and stabilize leukocyte rolling on L- or P-selectin. In addition, they function as a cell adhesion receptor, which supports approximately 80% of E-selectin-dependent rolling.
Resumo:
The examination of radiolarian biodiversity at the family level through Phanerozoic time reveals some general trends known in other groups of organisms, especially among plankton, while some other trends seem to be quite peculiar. The Permian/Triassic crisis that is one of the most important in the evolution of marine organisms, is marked in radiolarian assemblages by the extinction of two orders (Albaillellaria and Latentifistularia) towards the end of the Permian, and mostly by the tremendous diversification of Spumellaria and Nassellaria in the early-mid Triassic. Radiolarian diversity increased from Cambrian to Jurassic, remained quite stable during the Cretaceous and has decreased slightly since then.
Resumo:
Soluble MHC-peptide (pMHC) complexes, commonly referred to as tetramers, are widely used to enumerate and to isolate Ag-specific CD8(+) CTL. It has been noted that such complexes, as well as microsphere- or cell-associated pMHC molecules compromise the functional integrity of CTL, e.g., by inducing apoptosis of CTL, which limits their usefulness for T cell sorting or cloning. By testing well-defined soluble pMHC complexes containing linkers of different length and valence, we find that complexes comprising short linkers (i.e., short pMHC-pMHC distances), but not those containing long linkers, induce rapid death of CTL. This cell death relies on CTL activation, the coreceptor CD8 and cytoskeleton integrity, but is not dependent on death receptors (i.e., Fas, TNFR1, and TRAILR2) or caspases. Within minutes of CTL exposure to pMHC complexes, reactive oxygen species emerged and mitochondrial membrane depolarized, which is reminiscent of caspase-independent T cell death. The morphological changes induced during this rapid CTL death are characteristic of programmed necrosis and not apoptosis. Thus, soluble pMHC complexes containing long linkers are recommended to prevent T cell death, whereas those containing short linkers can be used to eliminate Ag-specific CTL.