170 resultados para 165-999A
Resumo:
Many questions in evolutionary biology require an estimate of divergence times but, for groups with a sparse fossil record, such estimates rely heavily on molecular dating methods. The accuracy of these methods depends on both an adequate underlying model and the appropriate implementation of fossil evidence as calibration points. We explore the effect of these in Poaceae (grasses), a diverse plant lineage with a very limited fossil record, focusing particularly on dating the early divergences in the group. We show that molecular dating based on a data set of plastid markers is strongly dependent on the model assumptions. In particular, an acceleration of evolutionary rates at the base of Poaceae followed by a deceleration in the descendants strongly biases methods that assume an autocorrelation of rates. This problem can be circumvented by using markers that have lower rate variation, and we show that phylogenetic markers extracted from complete nuclear genomes can be a useful complement to the more commonly used plastid markers. However, estimates of divergence times remain strongly affected by different implementations of fossil calibration points. Analyses calibrated with only macrofossils lead to estimates for the age of core Poaceae ∼51-55 Ma, but the inclusion of microfossil evidence pushes this age to 74-82 Ma and leads to lower estimated evolutionary rates in grasses. These results emphasize the importance of considering markers from multiple genomes and alternative fossil placements when addressing evolutionary issues that depend on ages estimated for important groups.
Resumo:
AIMS/HYPOTHESIS: Disruption of the retinal pigment epithelial (RPE) barrier contributes to sub-retinal fluid and retinal oedema as observed in diabetic retinopathy. High placental growth factor (PLGF) vitreous levels have been found in diabetic patients. This work aimed to elucidate the influence of PLGF-1 on a human RPE cell line (ARPE-19) barrier in vitro and on normal rat eyes in vivo. METHODS: ARPE-19 permeability was measured using transepithelial resistance and inulin flux under stimulation of PLGF-1, vascular endothelial growth factor (VEGF)-E and VEGF 165. Using RT-PCR, we evaluated the effect of hypoxic conditions or insulin on transepithelial resistance and on PLGF-1 and VEGF receptors. The involvement of mitogen-activated protein kinase (MEK, also known as MAPK)/extracellular signal-regulated kinase (ERK, also known as EPHB2) signalling pathways under PLGF-1 stimulation was evaluated by western blot analysis and specific inhibitors. The effect of PLGF-1 on the external haemato-retinal barrier was evaluated after intravitreous injection of PLGF-1 in the rat eye; evaluation was by semi-thin analysis and zonula occludens-1 immunolocalisation on flat-mounted RPE. RESULTS: In vitro, PLGF-1 induced a reversible decrease of transepithelial resistance and enhanced tritiated inulin flux. These effects were specifically abolished by an antisense oligonucleotide directed at VEGF receptor 1. Exposure of ARPE-19 cells to hypoxic conditions or to insulin induced an upregulation of PLGF-1 expression along with increased transcellular permeability. The PLGF-1-induced RPE cell permeability involved the MEK signalling pathway. Injection of PLGF-1 in the rat eye vitreous induced an opening of the RPE tight junctions with subsequent sub-retinal fluid accumulation, retinal oedema and cytoplasm translocation of junction proteins. CONCLUSIONS/INTERPRETATION: Our results indicate that PLGF-1 may be a potential regulation target for the control of diabetic retinal and macular oedema.
Resumo:
Bright-field wholemount labeling techniques applied to the mammalian central nervous system (CNS) offer advantages over conventional methods based on sections since an immediate and three-dimensional view of the stained components is provided. It thereby becomes possible to survey and count large number of cells and fibers in their natural relationships. The ability of confocal laser scanning microscopy to visualize in one focal plane the fluorescence associated with multiple markers could be most valuable by the availability of reliable wholemount fluorescent techniques. Accordingly, based in our previously published bright-field wholemount protocols [Brain Res. Prot. 2 (1998) 165-173], we have devised an effective immmunofluorescence wholemount procedure. We show that reliable wholemount fluorescent staining can be obtained using isolated complete CNS aged up to rat embryonic day 17, with antibodies penetration in the millimeter range. Examples are shown of preparations in which colocalization can be observed in nerve cells of cytoskeletal and calcium-binding proteins.
Resumo:
Pharmacological treatment of hypertension is effective in preventing cardiovascular and renal complications. Calcium antagonists and blockers of the renin-angiotensin system are widely used today to initiate antihypertensive therapy but, when given as monotherapy, do not suffice in most patients to normalize blood pressure. Combining the two types of agents considerably increases the antihypertensive efficacy, but not at the expense of a deterioration of tolerability. This is exemplified by the experience accumulated with the recently developed fixed dose combination containing the AT(1)-receptor blocker valsartan (160 mg) and the dihydropyridine amlodipine (5 or 10 mg). In a randomized trial, an 8-week treatment normalized blood pressure (<140/90 mmHg) within 8 weeks in a large fraction of hypertensive patients (78.4% and 85.2% using the 5/160 [n = 371] and 10/160 mg [n = 377] dosage, respectively). Like all AT(1)-receptor blockers valsartan has a placebo-like tolerability. Valsartan prevents to a large extent the occurrence amlodipine-induced peripheral edema. Both amlodipine and valsartan have beneficial effects on cardiovascular morbidity and mortality, as well as protective effects on renal function. The co-administration of these two agents is therefore very attractive, as it enables a rapid and sustained blood pressure control in hypertensive patients. The availability of a fixed-dose combination based on amlodipine and valsartan is expected therefore to facilitate the management of hypertension, to improve long-term adherence with antihypertensive therapy and, ultimately, to have a positive impact on cardiovascular and renal outcomes.
Resumo:
The cancer-testis antigen NY-ESO-1 has been targeted as a tumor-associated antigen by immunotherapeutical strategies, such as cancer vaccines. The prerequisite for a T-cell-based therapy is the induction of T cells capable of recognizing the NY-ESO-1-expressing tumor cells. In this study, we generated human T lymphocytes directed against the immunodominant NY-ESO-1(157-165) epitope known to be naturally presented with HLA-A*0201. We succeeded to isolate autorestricted and allorestricted T lymphocytes with low, intermediate or high avidity TCRs against the NY-ESO-1 peptide. The avidity of the established CTL populations correlated with their capacity of lysing HLA-A2-positive, NY-ESO-1-expressing tumor cell lines derived from different origins, e.g. melanoma and myeloma. The allorestricted NY-ESO-1-specific T lymphocytes displayed TCRs with the highest avidity and best anti-tumor recognition activity. TCRs derived from allorestricted, NY-ESO-1-specific T cells may be useful reagents for redirecting primary T cells by TCR gene transfer and, therefore, may facilitate the development of adoptive transfer regimens based on TCR-transduced T cells for the treatment of NY-ESO-1-expressing hematological malignancies and solid tumors.