202 resultados para 123-765A
Resumo:
BACKGROUND: In many countries, primary care physicians determine whether or not older drivers are fit to drive. Little, however, is known regarding the effects of cognitive decline on driving performance and the means to detect it. This study explores to what extent the trail making test (TMT) can provide indications to clinicians about their older patients' on-road driving performance in the context of cognitive decline. METHODS: This translational study was nested within a cohort study and an exploratory psychophysics study. The target population of interest was constituted of older drivers in the absence of important cognitive or physical disorders. We therefore recruited and tested 404 home-dwelling drivers, aged 70 years or more and in possession of valid drivers' licenses, who volunteered to participate in a driving refresher course. Forty-five drivers also agreed to undergo further testing at our lab. On-road driving performance was evaluated by instructors during a 45 minute validated open-road circuit. Drivers were classified as either being excellent, good, moderate, or poor depending on their score on a standardized evaluation of on-road driving performance. RESULTS: The area under the receiver operator curve for detecting poorly performing drivers was 0.668 (CI95% 0.558 to 0.778) for the TMT-A, and 0.662 (CI95% 0.542 to 0.783) for the TMT-B. TMT was related to contrast sensitivity, motion direction, orientation discrimination, working memory, verbal fluency, and literacy. Older patients with a TMT-A ≥ 54 seconds or a TMT-B ≥ 150 seconds have a threefold (CI95% 1.3 to 7.0) increased risk of performing poorly during the on-road evaluation. TMT had a sensitivity of 63.6%, a specificity of 64.9%, a positive predictive value of 9.5%, and a negative predictive value of 96.9%. CONCLUSION: In screening settings, the TMT would have clinicians uselessly consider driving cessation in nine drivers out of ten. Given the important negative impact this could have on older drivers, this study confirms the TMT not to be specific enough for clinicians to justify driving cessation without complementary investigations on driving behaviors.
Resumo:
BACKGROUND: Three-dimensional (3D) navigator-gated and prospectively corrected free-breathing coronary magnetic resonance angiography (MRA) allows for submillimeter image resolution but suffers from poor contrast between coronary blood and myocardium. Data collected over >100 ms/heart beat are also susceptible to bulk cardiac and respiratory motion. To address these problems, we examined the effect of a T2 preparation prepulse (T2prep) for myocardial suppression and a shortened acquisition window on coronary definition. METHODS AND RESULTS: Eight healthy adult subjects and 5 patients with confirmed coronary artery disease (CAD) underwent free-breathing 3D MRA with and without T2prep and with 120- and 60-ms data-acquisition windows. The T2prep resulted in a 123% (P<0. 001) increase in contrast-to-noise ratio (CNR). Coronary edge definition was improved by 33% (P<0.001). Acquisition window shortening from 120 to 60 ms resulted in better vessel definition (11%; P<0.001). Among patients with CAD, there was a good correspondence with disease. CONCLUSIONS: Free-breathing, T2prep, 3D coronary MRA with a shorter acquisition window resulted in improved CNR and better coronary artery definition, allowing the assessment of coronary disease. This approach offers the potential for free-breathing, noninvasive assessment of the major coronary arteries.
Resumo:
OBJECTIVES: This study was designed to compare the long-term clinical outcome of coronary artery bypass grafting (CABG) with intracoronary stenting of patients with isolated proximal left anterior descending coronary artery. BACKGROUND: Although numerous trials have compared coronary angioplasty with bypass surgery, none assessed the clinical evaluation in the long term. METHODS: We evaluated the 10-year clinical outcome in the SIMA (Stent versus Internal Mammary Artery grafting) trial. Patients were randomly assigned to stent implantation versus CABG. RESULTS: Of 123 randomized patients, 59 underwent CABG and 62 received a stent (2 patients were excluded). Follow-up after 10 years was obtained for 98% of the randomized patients. Twenty-six patients (42%) in the percutaneous coronary intervention group and 10 patients (17%) in the CABG group reached an end point (p < 0.001). This difference was due to a higher need for additional revascularization. The incidences of death and myocardial infarction were identical at 10%. Progression of the disease requiring additional revascularization was rare (5%) and was similar for the 2 groups. Stent thrombosis occurred in 2 patients (3%). Angina functional class showed no significant differences between the 2 groups. CONCLUSIONS: Both stent implantation and CABG are safe and highly effective in relieving symptoms in patients with isolated, proximal left anterior descending coronary artery stenosis. Stenting with bare-metal stents is associated with a higher need for repeat interventions. The long-term prognosis for these patients is excellent with either mode of revascularization.
Resumo:
The role of PIP(2) in pancreatic beta cell function was examined here using the beta cell line MIN6B1. Blocking PIP(2) with PH-PLC-GFP or PIP5KIgamma RNAi did not impact on glucose-stimulated secretion although susceptibility to apoptosis was increased. Over-expression of PIP5KIgamma improved cell survival and inhibited secretion with accumulation of endocytic vacuoles containing F-actin, PIP(2), transferrin receptor, caveolin 1, Arf6 and the insulin granule membrane protein phogrin but not insulin. Expression of constitutively active Arf6 Q67L also resulted in vacuole formation and inhibition of secretion, which was reversed by PH-PLC-GFP co-expression. PIP(2) co-localized with gelsolin and F-actin, and gelsolin co-expression partially reversed the secretory defect of PIP5KIgamma-over-expressing cells. RhoA/ROCK inhibition increased actin depolymerization and secretion, which was prevented by over-expressing PIP5KIgamma, while blocking PIP(2) reduced constitutively active RhoA V14-induced F-actin polymerization. In conclusion, although PIP(2) plays a pro-survival role in MIN6B1 cells, excessive PIP(2) production because of PIP5KIgamma over-expression inhibits secretion because of both a defective Arf6/PIP5KIgamma-dependent endocytic recycling of secretory membrane and secretory membrane components such as phogrin and the RhoA/ROCK/PIP5KIgamma-dependent perturbation of F-actin cytoskeleton remodelling.
Resumo:
Biologic agents have substantially advanced the treatment of immunological disorders, including chronic inflammatory and autoimmune diseases. However, these drugs are often associated with adverse events (AEs), including allergic, immunological and other unwanted reactions. AEs can affect almost any organ or system in the body and can occur immediately, within minutes to hours, or with a delay of several days or more after initiation of biologic therapy. Although some AEs are a direct consequence of the functional inhibition of biologic-agent-targeted antigens, the pathogenesis of other AEs results from a drug-induced imbalance of the immune system, intermediary factors and cofactors, a complexity that complicates their prediction. Herein, we review the AEs associated with biologic therapy most relevant to rheumatic and immunological diseases, and discuss their underlying pathogenesis. We also include our recommendations for the medical management of such AEs. Increased understanding and improved risk management of AEs induced by biologic agents will enable better use of these versatile immune-response modifiers.
Resumo:
Two different theories of migraine aura exist: In the vascular theory of Wolff, intracerebral vasoconstriction causes migraine aura via energy deficiency, whereas in the neuronal theory of Leão and Morison, spreading depression (SD) initiates the aura. Recently, it has been shown that the cerebrovascular constrictor endothelin-1 (ET-1) elicits SD when applied to the cortical surface, a finding that could provide a bridge between the vascular and the neuronal theories of migraine aura. Several arguments support the notion that ET-1-induced SD results from local vasoconstriction, but definite proof is missing. If ET-1 induces SD via vasoconstriction/ischemia, then neuronal damage is likely to occur, contrasting with the fact that SD in the otherwise normal cortex is not associated with any lesion. To test this hypothesis, we have performed a comprehensive histologic study of the effects of ET-1 when applied topically to the cerebral cortex of halothane-anesthetized rats. Our assessment included histologic stainings and immunohistochemistry for glial fibrillary acidic protein, heat shock protein 70, and transferase dUTP nick-end labeling assay. During ET-1 application, we recorded (i) subarachnoid direct current (DC) electroencephalogram, (ii) local cerebral blood flow by laser-Doppler flowmetry, and (iii) changes of oxyhemoglobin and deoxyhemoglobin by spectroscopy. At an ET-1 concentration of 1 muM, at which only 6 of 12 animals generated SD, a microarea with selective neuronal death was found only in those animals demonstrating SD. In another five selected animals, which had not shown SD in response to ET-1, SD was triggered at a second cranial window by KCl and propagated from there to the window exposed to ET-1. This treatment also resulted in a microarea of neuronal damage. In contrast, SD invading from outside did not induce neuronal damage in the absence of ET-1 (n = 4) or in the presence of ET-1 if ET-1 was coapplied with BQ-123, an ET(A) receptor antagonist (n = 4). In conclusion, SD in presence of ET-1 induced a microarea of selective neuronal necrosis no matter where the SD originated. This effect of ET-1 appears to be mediated by the ET(A) receptor.
Resumo:
In a randomised trial comparing early enteral feeding by gastric and post-pyloric routes, White and colleagues have shown that gastric feeding is possible and efficient in the vast majority of critically ill patients. But the authors' conclusion that gastric is equivalent to post-pyloric is true in only the least severe patients. Given the extra workload and costs, post-pyloric is now clearly indicated in case of gastric feeding failure.
Resumo:
Background- Cardiac hypertrophy involves growth responses to a variety of stimuli triggered by increased workload. It is an independent risk factor for heart failure and sudden death. Mammalian target of rapamycin (mTOR) plays a key role in cellular growth responses by integrating growth factor and energy status signals. It is found in 2 structurally and functionally distinct multiprotein complexes called mTOR complex (mTORC) 1 and mTORC2. The role of each of these branches of mTOR signaling in the adult heart is currently unknown. Methods and Results- We generated mice with deficient myocardial mTORC1 activity by targeted ablation of raptor, which encodes an essential component of mTORC1, during adulthood. At 3 weeks after the deletion, atrial and brain natriuretic peptides and β-myosin heavy chain were strongly induced, multiple genes involved in the regulation of energy metabolism were altered, but cardiac function was normal. Function deteriorated rapidly afterward, resulting in dilated cardiomyopathy and high mortality within 6 weeks. Aortic banding-induced pathological overload resulted in severe dilated cardiomyopathy already at 1 week without a prior phase of adaptive hypertrophy. The mechanism involved a lack of adaptive cardiomyocyte growth via blunted protein synthesis capacity, as supported by reduced phosphorylation of ribosomal S6 kinase 1 and 4E-binding protein 1. In addition, reduced mitochondrial content, a shift in metabolic substrate use, and increased apoptosis and autophagy were observed. Conclusions- Our results demonstrate an essential function for mTORC1 in the heart under physiological and pathological conditions and are relevant for the understanding of disease states in which the insulin/insulin-like growth factor signaling axis is affected such as diabetes mellitus and heart failure or after cancer therapy.
Resumo:
Paracrine communication between different parts of the renal tubule is increasingly recognized as an important determinant of renal function. Previous studies have shown that changes in dietary acid-base load can reverse the direction of apical α-ketoglutarate (αKG) transport in the proximal tubule and Henle's loop from reabsorption (acid load) to secretion (base load). Here we show that the resulting changes in the luminal concentrations of αKG are sensed by the αKG receptor OXGR1 expressed in the type B and non-A-non-B intercalated cells of the connecting tubule (CNT) and the cortical collecting duct (CCD). The addition of 1 mM αKG to the tubular lumen strongly stimulated Cl--dependent HCO3- secretion and electroneutral transepithelial NaCl reabsorption in microperfused CCDs of wild-type mice but not Oxgr1-/- mice. Analysis of alkali-loaded mice revealed a significantly reduced ability of Oxgr1-/- mice to maintain acid-base balance. Collectively, these results demonstrate that OXGR1 is involved in the adaptive regulation of HCO3- secretion and NaCl reabsorption in the CNT/CCD under acid-base stress and establish αKG as a paracrine mediator involved in the functional coordination of the proximal and the distal parts of the renal tubule.
Resumo:
Ce travail concerne les rhapsodes et poètes épiques de l'époque impériale, étudiés à partir de la prosopographie des technites dionysiaques qui a été établie par I. E. Stephanis. Ces artistes étaient très appréciés à l'époque hellénistique ; l'objectif est d'examiner dans quelle mesure ils restent un vecteur de diffusion des mythes homériques, quels sont les contextes de leurs prestations et quelles sont leurs fonctions comme représentants de la poésie épique traditionnelle à l'époque impériale. La première partie discute certaines identifications de Stephanis et analyse les rapports entre rhapsodes et homéristes, pour donner une estimation du nombre des rhapsodes et des poètes épiques dont on a gardé la trace. La seconde partie étudie leur répartition dans l'espace et dans le temps, entre la fin du Ier siècle avant J.-C. et la deuxième moitié du IIIe siècle après J.-C., afin de dégager leurs fonctions culturelles et sociales et d'interpréter la diminution considérable de leur nombre dans les concours, auditions ou fêtes privées.
Resumo:
Acid-sensing ion channels (ASICs) are neuronal H(+)-gated cation channels, and the transient receptor potential vanilloid 1 channel (TRPV1) is a multimodal cation channel activated by low pH, noxious heat, capsaicin, and voltage. ASICs and TRPV1 are present in sensory neurons. It has been shown that raising the temperature increases TRPV1 and decreases ASIC H(+)-gated current amplitudes. To understand the underlying mechanisms, we have analyzed ASIC and TRPV1 function in a recombinant expression system and in dorsal root ganglion (DRG) neurons at room and physiological temperature. We show that temperature in the range studied does not affect the pH dependence of ASIC and TRPV1 activation. A temperature increase induces, however, a small alkaline shift of the pH dependence of steady-state inactivation of ASIC1a, ASIC1b, and ASIC2a. The decrease in ASIC peak current amplitudes at higher temperatures is likely in part due to the observed accelerated open channel inactivation kinetics and for some ASIC types to the changed pH dependence of steady-state inactivation. The increase in H(+)-activated TRPV1 current at the higher temperature is at least in part due to a hyperpolarizing shift in its voltage dependence. The contribution of TRPV1 relative to ASICs to H(+)-gated currents in DRG neurons increases with higher temperature and acidity. Still, ASICs remain the principal pH sensors of DRG neurons at 35°C in the pH range ≥6.
Resumo:
Aims: We performed a randomised controlled trial in children of both gender and different pubertal stages to determine whether a school-based physical activity (PA) program during a full schoolyear influences bone mineral content (BMC) and whether there are differences in response for boys and girls before and during puberty. Methods: Twenty-eight 1st and 5th grade classes were cluster randomised to an intervention (INT, 16 classes, n=297) and control (CON; 12 classes, n=205) group. The intervention consisted of a multi-component PA intervention including daily physical education during a full school year. Each lesson was predetermined, included about ten minutes of jumping or strength training exercises of various intensity and was the same for all children. Measurements included anthropometry (height and weight), tanner stages (by self-assessment), PA (by accelerometry) and BMC for total body, femoral neck, total hip and lumbar spine using dualenergy X-ray absorptiometry (DXA). Bone parameters were normalized for gender and tanner stage (pre- vs. puberty). Analyses were performed by a regression model adjusted for gender, baseline height, baseline weight, baseline PA, post-intervention tanner stage, baseline BMC, and cluster. Researchers were blinded to group allocation. Children in the control group did not know about the intervention arm. Results: 217 (57%) of 380 children who initially agreed to have DXA measurements had also post-intervention DXA and PA data. Mean age of prepubertal and pubertal children at baseline was 9.0±2.1 and 11.2±0.6 years, respectively. 47/114 girls and 68/103 boys were prepubertal at the end of the intervention. Compared to CON, children in INT showed statistically significant increases in BMC of total body (adjusted z-score differences: 0.123; 95%>CI 0.035 to 0.212), femoral neck (0.155; 95%>CI 0.007 to 0.302), and lumbar spine (0.127; 95%>CI 0.026 to 0.228). Importantly, there was no gender*group, but a tanner*group interaction consistently favoring prepubertal children. Conclusions: Our findings show that a general, but stringent school-based PA intervention can improve BMC in elementary school children. Pubertal stage, but not gender seems to determine bone sensitivity to physical activity loading.
Resumo:
AIMS: To evaluate the effect of a structured preoperative preparation on child and parent state anxiety, child behavioural change and parent satisfaction. BACKGROUND: It is estimated that around 50-70% of hospitalised children experience severe anxiety and distress prior to surgery. Children who are highly anxious and distressed preoperatively are likely to be distressed on awakening and have negative postoperative behaviour. Although education before surgery has been found to be useful mostly in North America, the effectiveness of preoperative preparation programme adapted to the Australian context remains to be tested. DESIGN: This single-blind randomised controlled study was conducted at a tertiary referral hospital for children in Western Australia. METHODS: Following ethics approval and parental consent, 73 children and one of their carers (usually a parent) were randomly assigned into two groups. The control group had standard practice with no specific preoperative education and the experimental group received a preoperative preparation, including a photo file, demonstration of equipment using a role-modelling approach and a tour. RESULTS: The preoperative preparation reduced parent state anxiety significantly (-2·32, CI -4·06 to -0·56, p = 0·009), but not child anxiety (-0·59, CI -1·23 to 0·06, p = 0·07). There was no significant difference in child postoperative behaviour or parent satisfaction between the groups. There was a significant two-point pain score reduction in the preoperative preparation group, when compared with the control group median 2 (IQR 5) and 4 (IQR 4), respectively (p = 0·001).¦CONCLUSIONS: Preoperative preparation was more efficient on parent than child. Although the preoperative preparation had limited effect on child anxiety, it permitted to decrease pain experience in the postoperative period.¦RELEVANCE TO CLINICAL PRACTICE: Parents should be actively involved in their child preoperative preparation.