264 resultados para second image reversed
Resumo:
Second cancer risk assessment for radiotherapy is controversial due to the large uncertainties of the dose-response relationship. This could be improved by a better assessment of the peripheral doses to healthy organs in future epidemiological studies. In this framework, we developed a simple Monte Carlo (MC) model of the Siemens Primus 6 MV linac for both open and wedged fields that we then validated with dose profiles measured in a water tank up to 30 cm from the central axis. The differences between the measured and calculated doses were comparable to other more complex MC models and never exceeded 50%. We then compared our simple MC model with the peripheral dose profiles of five different linacs with different collimation systems. We found that the peripheral dose between two linacs could differ up to a factor of 9 for small fields (5 × 5 cm(2)) and up to a factor of 10 for wedged fields. Considering that an uncertainty of 50% in dose estimation could be acceptable in the context of risk assessment, the MC model can be used as a generic model for large open fields (≥10 × 10 cm(2)) only. The uncertainties in peripheral doses should be considered in future epidemiological studies when designing the width of the dose bins to stratify the risk as a function of the dose.
Resumo:
Given the adverse impact of image noise on the perception of important clinical details in digital mammography, routine quality control measurements should include an evaluation of noise. The European Guidelines, for example, employ a second-order polynomial fit of pixel variance as a function of detector air kerma (DAK) to decompose noise into quantum, electronic and fixed pattern (FP) components and assess the DAK range where quantum noise dominates. This work examines the robustness of the polynomial method against an explicit noise decomposition method. The two methods were applied to variance and noise power spectrum (NPS) data from six digital mammography units. Twenty homogeneously exposed images were acquired with PMMA blocks for target DAKs ranging from 6.25 to 1600 µGy. Both methods were explored for the effects of data weighting and squared fit coefficients during the curve fitting, the influence of the additional filter material (2 mm Al versus 40 mm PMMA) and noise de-trending. Finally, spatial stationarity of noise was assessed.Data weighting improved noise model fitting over large DAK ranges, especially at low detector exposures. The polynomial and explicit decompositions generally agreed for quantum and electronic noise but FP noise fraction was consistently underestimated by the polynomial method. Noise decomposition as a function of position in the image showed limited noise stationarity, especially for FP noise; thus the position of the region of interest (ROI) used for noise decomposition may influence fractional noise composition. The ROI area and position used in the Guidelines offer an acceptable estimation of noise components. While there are limitations to the polynomial model, when used with care and with appropriate data weighting, the method offers a simple and robust means of examining the detector noise components as a function of detector exposure.
Resumo:
Atlas registration is a recognized paradigm for the automatic segmentation of normal MR brain images. Unfortunately, atlas-based segmentation has been of limited use in presence of large space-occupying lesions. In fact, brain deformations induced by such lesions are added to normal anatomical variability and they may dramatically shift and deform anatomically or functionally important brain structures. In this work, we chose to focus on the problem of inter-subject registration of MR images with large tumors, inducing a significant shift of surrounding anatomical structures. First, a brief survey of the existing methods that have been proposed to deal with this problem is presented. This introduces the discussion about the requirements and desirable properties that we consider necessary to be fulfilled by a registration method in this context: To have a dense and smooth deformation field and a model of lesion growth, to model different deformability for some structures, to introduce more prior knowledge, and to use voxel-based features with a similarity measure robust to intensity differences. In a second part of this work, we propose a new approach that overcomes some of the main limitations of the existing techniques while complying with most of the desired requirements above. Our algorithm combines the mathematical framework for computing a variational flow proposed by Hermosillo et al. [G. Hermosillo, C. Chefd'Hotel, O. Faugeras, A variational approach to multi-modal image matching, Tech. Rep., INRIA (February 2001).] with the radial lesion growth pattern presented by Bach et al. [M. Bach Cuadra, C. Pollo, A. Bardera, O. Cuisenaire, J.-G. Villemure, J.-Ph. Thiran, Atlas-based segmentation of pathological MR brain images using a model of lesion growth, IEEE Trans. Med. Imag. 23 (10) (2004) 1301-1314.]. Results on patients with a meningioma are visually assessed and compared to those obtained with the most similar method from the state-of-the-art.
Resumo:
The aim of this study was to evaluate and compare organ doses delivered to patients in wrist and petrous bone examinations using a multislice spiral computed tomography (CT) and a C-arm cone-beam CT equipped with a flat-panel detector (XperCT). For this purpose, doses to the target organ, i.e. wrist or petrous bone, together with those to the most radiosensitive nearby organs, i.e. thyroid and eye lens, were measured and compared. Furthermore, image quality was compared for both imaging systems and different acquisition modes using a Catphan phantom. Results show that both systems guarantee adequate accuracy for diagnostic purposes for wrist and petrous bone examinations. Compared with the CT scanner, the XperCT system slightly reduces the dose to target organs and shortens the overall duration of the wrist examination. In addition, using the XperCT enables a reduction of the dose to the eye lens during head scans (skull base and ear examinations).
Resumo:
During adolescence, nutrition needs are high; however the literature shows that few adolescents are following standardized nutritional requirements. A few weeks before an intervention about nutrition to high school adolescents in Lausanne, they were invited to fill in a self-reported questionnaire about their nutrition modes and habits, and their self-image satisfaction (N = 198). Results show that only 5% of youth are eating 5 fruits and vegetables per day and only 29% 3 to 5 dairy products. 21% of female and 6% of boys are not satisfied about their self-image, and those exhibiting a poor self-image tend to adopt health compromising eating patterns in a higher proportion. During adolescence it is important not only to investigate the nutritional habits but also one's self image.
Resumo:
In this paper, we propose two active learning algorithms for semiautomatic definition of training samples in remote sensing image classification. Based on predefined heuristics, the classifier ranks the unlabeled pixels and automatically chooses those that are considered the most valuable for its improvement. Once the pixels have been selected, the analyst labels them manually and the process is iterated. Starting with a small and nonoptimal training set, the model itself builds the optimal set of samples which minimizes the classification error. We have applied the proposed algorithms to a variety of remote sensing data, including very high resolution and hyperspectral images, using support vector machines. Experimental results confirm the consistency of the methods. The required number of training samples can be reduced to 10% using the methods proposed, reaching the same level of accuracy as larger data sets. A comparison with a state-of-the-art active learning method, margin sampling, is provided, highlighting advantages of the methods proposed. The effect of spatial resolution and separability of the classes on the quality of the selection of pixels is also discussed.
Resumo:
The ill effects of second-hand smoke are now well documented. To protect the population from exposure to tobacco smoke, comprehensive smoking bans are necessary as expressed in the WHO Framework Convention on Tobacco Control and its guidelines. Switzerland has only a partial smoking ban full of exceptions which has been in effect since 2010, which reproduces the so-called Spanish model. In September 2012, the Swiss citizens refused a proposal for a more comprehensive ban. This case study examines the reasons behind this rejection and draws some lessons that can be learnt from it.
Resumo:
We present an open-source ITK implementation of a directFourier method for tomographic reconstruction, applicableto parallel-beam x-ray images. Direct Fourierreconstruction makes use of the central-slice theorem tobuild a polar 2D Fourier space from the 1D transformedprojections of the scanned object, that is resampled intoa Cartesian grid. Inverse 2D Fourier transform eventuallyyields the reconstructed image. Additionally, we providea complex wrapper to the BSplineInterpolateImageFunctionto overcome ITKâeuro?s current lack for image interpolatorsdealing with complex data types. A sample application ispresented and extensively illustrated on the Shepp-Loganhead phantom. We show that appropriate input zeropaddingand 2D-DFT oversampling rates together with radial cubicb-spline interpolation improve 2D-DFT interpolationquality and are efficient remedies to reducereconstruction artifacts.
Resumo:
We investigated the relationship between being bullied and measured body weight and perceived body weight among adolescents of a middle-income sub Saharan African country. Our data originated from the Global School-based Health Survey, which targets adolescents aged 13-15 years. Student weights and heights were measured before administrating the questionnaire which included questions about personal data, health behaviors and being bullied. Standard criteria were used to assess thinness, overweight and obesity. Among 1,006 participants who had complete data, 16.5% (95%CI 13.3-20.2) reported being bullied ≥ 3 days during the past 30 days; 13.4% were thin, 16.8% were overweight and 7.6% were obese. Categories of actual weight and of perceived weight correlated only moderately (Spearman correlation coefficient 0.37 for boys and 0.57 for girls; p < 0.001). In univariate analysis, both actual obesity (OR 1.76; p = 0.051) and perception of high weight (OR 1.63 for "slightly overweight"; OR 2.74 for "very overweight", both p < 0.05) were associated with being bullied. In multivariate analysis, ORs for categories of perceived overweight were virtually unchanged while ORs for actual overweight and obesity were substantially attenuated, suggesting a substantial role of perceived weight in the association with being bullied. Actual underweight and perceived thinness also tended to be associated with being bullied, although not significantly. Our findings suggest that more research attention be given to disentangling the significant association between body image, overweight and bullying among adolescents. Further studies in diverse populations are warranted.
Resumo:
Three-dimensional imaging for the quantification of myocardial motion is a key step in the evaluation of cardiac disease. A tagged magnetic resonance imaging method that automatically tracks myocardial displacement in three dimensions is presented. Unlike other techniques, this method tracks both in-plane and through-plane motion from a single image plane without affecting the duration of image acquisition. A small z-encoding gradient is subsequently added to the refocusing lobe of the slice-selection gradient pulse in a slice following CSPAMM acquisition. An opposite polarity z-encoding gradient is added to the orthogonal tag direction. The additional z-gradients encode the instantaneous through plane position of the slice. The vertical and horizontal tags are used to resolve in-plane motion, while the added z-gradients is used to resolve through-plane motion. Postprocessing automatically decodes the acquired data and tracks the three-dimensional displacement of every material point within the image plane for each cine frame. Experiments include both a phantom and in vivo human validation. These studies demonstrate that the simultaneous extraction of both in-plane and through-plane displacements and pathlines from tagged images is achievable. This capability should open up new avenues for the automatic quantification of cardiac motion and strain for scientific and clinical purposes.
Resumo:
The epithelial sodium channel (ENaC) is critical for sodium and BP homeostasis. ENaC is regulated by Nedd4-2-mediated ubiquitylation, which leads to its internalization; this process can be reversed by deubiquitylation, which is regulated by the aldosterone-induced enzyme Usp2-45. In a second regulatory pathway, ENaC can be activated by luminal serine protease-mediated cleavage of its extracellular loops. Whether these two regulatory processes interact, however, is unknown. Here, in HEK293 cells stably transfected with ENaC, Usp2-45 interacted with ENaC, leading to deubiquitylation of the channel and stimulation of ENaC activity >20-fold. This was accompanied by a modest increase in cell surface expression of ENaC and by proteolytic cleavage of alphaENaC and gammaENaC at their extracellular loops. When endocytosis was inhibited with dominant negative dynamin (DynK44R), channel density and gammaENaC cleavage were increased, but alphaENaC cleavage and ENaC activity were not augmented. When Usp2-45 was coexpressed with DynK44R, both alphaENaC cleavage and activity were recovered. In summary, these data suggest that Usp2-45 deubiquitylation of ENaC enhances the proteolytic activation of both alphaENaC and gammaENaC, possibly by inducing a conformational change and by interfering with endocytosis, respectively