324 resultados para peroxisome proliferator activated receptor delta


Relevância:

100.00% 100.00%

Publicador:

Resumo:

How can an ex-orphan be adopted? Is it possible to do so by attributing to it a key endogenous ligand that regulates its central functions? In the recent issue of Cell, Chakravarthy et al. attempted to answer this question by characterizing a new physiologically relevant ligand for the ex-orphan receptor peroxisome proliferator activated receptor alpha (PPARalpha).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Thiazolidinediones are agonists of peroxisome proliferator-activated receptor gamma (PPARgamma) that can induce fluid retention and weight gain through unclear mechanisms. To test a proposed role for the epithelial sodium channel ENaC in thiazolidinedione-induced fluid retention, we used mice with conditionally inactivated alphaENaC in the collecting duct (Scnn1a(loxloxCre) mice). In control mice, rosiglitazone did not alter plasma aldosterone levels or protein expression of ENaC subunits in the kidney, but did increase body weight, plasma volume, and the fluid content of abdominal fat pads, and decreased hematocrit. Scnn1a(loxloxCre) mice provided functional evidence for blunted Na+ uptake in the collecting duct, but still exhibited rosiglitazone-induced fluid retention. Moreover, treatment with rosiglitazone or pioglitazone did not significantly alter the open probability or number of ENaC channels per patch in isolated, split-open cortical collecting ducts of wild-type mice. Finally, patch-clamp studies in primary mouse inner medullary collecting duct cells did not detect ENaC activity but did detect a nonselective cation channel upregulated by pioglitazone. These data argue against a primary and critical role of ENaC in thiazolidinedione-induced fluid retention.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The aberrant accumulation of lipids in the liver ("fatty liver") is tightly associated with several components of the metabolic syndrome, including type 2 diabetes, coronary heart disease, and atherosclerosis. Here we show that the impaired hepatic expression of transcriptional cofactor transducin beta-like (TBL) 1 represents a common feature of mono- and multigenic fatty liver mouse models. Indeed, the liver-specific ablation of TBL1 gene expression in healthy mice promoted hypertriglyceridemia and hepatic steatosis under both normal and high-fat dietary conditions. TBL1 deficiency resulted in inhibition of fatty acid oxidation due to impaired functional cooperation with its heterodimerization partner TBL-related (TBLR) 1 and the nuclear receptor peroxisome proliferator-activated receptor (PPAR) α. As TBL1 expression levels were found to also inversely correlate with liver fat content in human patients, the lack of hepatic TBL1/TBLR1 cofactor activity may represent a molecular rationale for hepatic steatosis in subjects with obesity and the metabolic syndrome.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

To ensure efficient energy supply to the high demanding brain, nutrients are transported into brain cells via specific glucose (GLUT) and monocarboxylate transporters (MCT). Mitochondrial dysfunction and altered glucose metabolism are thought to play an important role in the progression of neurodegenerative diseases, including multiple sclerosis (MS). Here, we investigated the cellular localization of key GLUT and MCT proteins in human brain tissue of non-neurological controls and MS patients. We show that in control brain tissue GLUT and MCT proteins were abundantly expressed in a variety of central nervous system cells, particularly in microglia and endothelial cells. In active MS lesions, GLUTs and MCTs were highly expressed in infiltrating leukocytes and reactive astrocytes. Astrocytes manifest increased MCT1 staining and maintain GLUT expression in inactive lesions, whereas demyelinated axons exhibit significantly reduced GLUT3 and MCT2 immunoreactivity in inactive lesions. Finally, we demonstrated that the co-transcription factor peroxisome proliferator-activated receptor gamma co-activator 1-alpha (PGC-1α), an important protein involved in energy metabolism, is highly expressed in reactive astrocytes in active MS lesions. Overexpression of PGC-1α in astrocyte-like cells resulted in increased production of several GLUT and MCT proteins. In conclusion, we provide for the first time a comprehensive overview of key nutrient transporters in white matter brain samples. Moreover, our data demonstrate an altered expression of these nutrient transporters in MS brain tissue, including a marked reduction of axonal GLUT3 and MCT2 expression in chronic lesions, which may impede efficient nutrient supply to the hypoxic demyelinated axons thereby contributing to the ongoing neurodegeneration in MS. GLIA 2014;62:1125-1141.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

To be able to colonize its host, invading Salmonella enterica serovar Typhimurium must disrupt and severely affect host-microbiome homeostasis. Here we report that S. Typhimurium induces acute infectious colitis by inhibiting peroxisome proliferator-activated receptor gamma (PPARγ) expression in intestinal epithelial cells. Interestingly, this PPARγ down-regulation by S. Typhimurium is independent of TLR-4 signaling but triggers a marked elevation of host innate immune response genes, including that encoding the antimicrobial peptide lipocalin-2 (Lcn2). Accumulation of Lcn2 stabilizes the metalloproteinase MMP-9 via extracellular binding, which further aggravates the colitis. Remarkably, when exposed to S. Typhimurium, Lcn2-null mice exhibited a drastic reduction of the colitis and remained protected even at later stages of infection. Our data suggest a mechanism in which S. Typhimurium hijacks the control of host immune response genes such as those encoding PPARγ and Lcn2 to acquire residence in a host, which by evolution has established a symbiotic relation with its microbiome community to prevent pathogen invasion.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Epigenetic post-transcriptional modifications of histone tails are thought to help in coordinating gene expression during development. An epigenetic signature is set in pluripotent cells and interpreted later at the onset of differentiation. In pluripotent cells, epigenetic marks normally associated with active genes (H3K4me3) and with silent genes (H3K27me3) atypically co-occupy chromatin regions surrounding the promoters of important developmental genes. However, it is unclear how these epigenetic marks are recognized when cell differentiation starts and what precise role they play. Here, we report the essential role of the nuclear receptor peroxisome proliferator-activated receptor β (PPARβ, NR1C2) in Xenopus laevis early development. By combining loss-of-function approaches, large throughput transcript expression analysis by the mean of RNA-seq and intensive chromatin immunoprecipitation experiments, we unveil an important cooperation between epigenetic marks and PPARβ. During Xenopus laevis gastrulation PPARβ recognizes H3K27me3 marks that have been deposited earlier at the pluripotent stage to activate early differentiation genes. Thus, PPARβis the first identified transcription factor that interprets an epigenetic signature of pluripotency, in vivo, during embryonic development. This work paves the way for a better mechanistic understanding of how the activation of hundreds of genes is coordinated during early development.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Adipose tissue is not an inert cell mass contributing only to the storage of fat, but a sophisticated ensemble of cellular components with highly specialized and complex functions. In addition to managing the most important energy reserve of the body, it secretes a multitude of soluble proteins called adipokines, which have beneficial or, alternatively, deleterious effects on the homeostasis of the whole body. The expression of these adipokines is an integrated response to various signals received from many organs, which depends heavily on the integrity and physiological status of the adipose tissue. One of the main regulators of gene expression in fat is the transcription factor peroxisome proliferator-activated receptor gamma (PPARgamma), which is a fatty acid- and eicosanoid-dependent nuclear receptor that plays key roles in the development and maintenance of the adipose tissue. Furthermore, synthetic PPARgamma agonists are therapeutic agents used in the treatment of type 2 diabetes.This review discusses recent knowledge on the link between fat physiology and metabolic diseases, and the roles of PPARgamma in this interplay via the regulation of lipid and glucose metabolism. Finally, we assess the putative benefits of targeting this nuclear receptor with still-to-be-identified highly selective PPARgamma modulators.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND/AIMS: Thiazolidinediones (TZDs, like rosiglitazone (RGZ)) are peroxisome proliferator-activated receptor γ (PPARγ) agonists used to treat type 2 diabetes. Clinical limitations include TZD-induced fluid retention and body weight (BW) increase, which are inhibited by amiloride, an epithelial-sodium channel (ENaC) blocker. RGZ-induced fluid retention is maintained in mice with αENaC knockdown in the collecting duct (CD). Since ENaC in the connecting tubule (CNT) rather than in CD appears to be critical for normal NaCl retention, we aimed to further explore the role of ENaC in CNT in RGZ-induced fluid retention. METHODS: Mice with conditional inactivation of αENaC in both CNT and CD were used (αENaC lox/lox AQP2-Cre; 'αENaC-CNT/CD-KO') and compared with littermate controls (αENaC lox/lox mice; 'WT'). BW was monitored and total body water (TBW) and extracellular fluid volume (ECF) were determined by bioelectrical impedance spectroscopy (BIS) before and after RGZ (320 mg/kg diet for 10 days). RESULTS: On regular NaCl diet, αENaC-CNT/CD-KO had normal BW, TBW, ECF, hematocrit, and plasma Na(+), K(+), and creatinine, associated with an increase in plasma aldosterone compared with WT. Challenging αENaC-CNT/CD-KO with a low NaCl diet unmasked impaired NaCl and K homeostasis, consistent with effective knockdown of αENaC. In WT, RGZ increased BW (+6.1%), TBW (+8.4%) and ECF (+10%), consistent with fluid retention. These changes were significantly attenuated in αENaC-CNT/CD-KO (+3.4, 1.3, and 4.3%). CONCLUSION: Together with the previous studies, the current results are consistent with a role of αENaC in CNT in RGZ-induced fluid retention, which dovetails with the physiological relevance of ENaC in this segment. © 2014 S. Karger AG, Basel.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Glitazones are efficient insulin sensitizers that blunt the effects of angiotensin II (ANG II) in the rat. Sodium chloride is another important modulator of the systemic and renal effects of ANG II. Whether glitazones interfere with the interaction between sodium and the response to ANG II is not known. Therefore, we investigated the effects of pioglitazone on the relationship between sodium and the systemic and renal effects of ANG II in rats. Pioglitazone, or vehicle, was administered for 4 wk to 8-wk-old obese Zucker rats. Animals were fed a normal-sodium (NS) or a high-sodium (HS) diet. Intravenous glucose tolerance tests, systemic and renal hemodynamic responses to ANG II, and the renal ANG II binding and expression of ANG II type 1 (AT(1)) receptors were measured. The results of our study were that food intake and body weight increased, whereas blood pressure, heart rate, filtration fraction, and insulin levels decreased significantly with pioglitazone in obese rats on both diets. Pioglitazone blunted the systemic response to ANG II and abolished the increased responsiveness to ANG II induced by a HS diet. Pioglitazone modified the renal hemodynamic response to changes in salt intake while maintaining a lower filtration fraction with ANG II perfusion. These effects were associated with a decrease in the number and expression of the AT(1) receptor in the kidney. In conclusion, these data demonstrate that the peroxisome proliferator-activated receptor-gamma agonist pioglitazone modifies the physiological relationship between sodium chloride and the response to ANG II in insulin-resistant rats.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The peroxisome proliferator-activated receptor gamma (PPARgamma) is abundantly expressed in adipocytes, and plays an important role in adipocyte differentiation and fat accretion. It is a heterodimeric partner of the retinoid X receptors alpha, beta and gamma, which are also expressed in the adipose tissue. As lethality of PPARgamma(-/-) and RXRalpha(-/-) mouse fetuses precluded the analysis of PPARgamma and RXRalpha functions in mature adipocytes, we generated RXRalpha(ad-/-) and PPARgamma(ad-/-) mice, in which RXRalpha and PPARgamma are selectively ablated in adult adipocytes, respectively. Even though the adiposity of RXRalpha(ad-/-) mice is similar to that of control mice when fed a regular diet, they are resistant to chemically and dietary-induced obesity. However, mature adipocytes lacking either both RXRalpha and RXRgamma or PPARgamma die, and are replaced by newly formed adipocytes. Thus, in adipocytes, RXRalpha is essential for lipogenesis, but RXRgamma can functionally replace RXRalpha for the adipocyte vital functions exerted by PPARgamma/RXR heterodimers.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Transcriptional activity relies on coregulators that modify the chromatin structure and serve as bridging factors between transcription factors and the basal transcription machinery. Using the DE domain of human peroxisome proliferator-activated receptor gamma (PPARgamma) as bait in a yeast two-hybrid screen of a human adipose tissue library, we isolated the scaffold attachment factor B1 (SAFB1/HET/HAP), which was previously shown to be a corepressor of estrogen receptor alpha. We show here that SAFB1 has a very broad tissue expression profile in human and is also expressed all along mouse embryogenesis. SAFB1 interacts in pull-down assays not only with PPARgamma but also with all nuclear receptors tested so far, albeit with different affinities. The association of SAFB1 and PPARgamma in vivo is further demonstrated by fluorescence resonance energy transfer (FRET) experiments in living cells. We finally show that SAFB1 is a rather general corepressor for nuclear receptors. Its change in expression during the early phases of adipocyte and enterocyte differentiation suggests that SAFB1 potentially influences cell proliferation and differentiation decisions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

La neuroinflammation joue un rôle important dans de nombreuses maladies neurodégéneratives dont la sclérose en plaques. Les microglies et les astrocytes sont les cellules effectrices de la réponse inflammatoire dans le cerveau et sont impliquées dans les processus de démyélinisation et de remyélinisation. Dans ce travail, nous avons étudié les réactions inflammatoires accompagnant la démyélinisation et leurs conséquences sur la remyélinisation. Dans ce but, trois différents traitements démyélinisants ont été appliqués sur des cultures en agrégats de télencéphales de rats, à savoir (i) la lysophosphatidylcholine, (ii) l'interféron-γ (IFN-γ) combiné avec du lipopolysaccharide (LPS), et (iii) des anticorps dirigés contre la MOG (myelin oligodendrocyte glycoprotein) en présence de complément. Nous avons montré que ces traitements induisent différents types de démyélinisation, de réponses inflammatoires et d'effets secondaires sur les neurones. Nous avons ensuite examiné les effets de l'atténuation de la réponse inflammatoire sur la démyélinisation et la remyélinisation, en utilisant la minocycline, un antibiotique bloquant la réactivité microgiale, et le GW 5501516, un agoniste de PPAR-β (peroxisome proliferator-activated receptor-β). Nous avons montré que la minocycline prévient l'activation microgliale induite par le traitement avec l'IFN-γ et le LPS, mais qu'elle ne protège pas de la démyélinisation. Néanmoins, elle induit une remyélinisation, probablement en favorisant la maturation d'oligodendrocytes immatures. Le GW 501516 diminue l'expression de l'IFN-γ après une démyélinisation induite par les anticorps anti-MOG, mais il ne prévient pas la démyélinisation et ne favorise pas la remyélinisation. Ces résultats indiquent que la démyélinisation induite par le traitement avec l'IFN-γ et le LPS n'est pas une conséquence directe de l'activation microgliale, et que l'augmentation de l'expression de l'IFN-γ ne participe pas à la démyélinisation induite par les anticorps anti-MOG. Ces résultats suggèrent que l'atténuation de l'activation microgliale est bénéfique pour la remyélinisation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We have investigated if changes in hepatic lipid metabolism produced by old age are related to changes in liver peroxisome proliferator-activated receptor alpha (PPARalpha). Our results indicate that 18-month-old rats showed a marked decrease in the expression and activity of liver PPARalpha, as shown by significant reductions in PPARalpha mRNA, protein and binding activity, resulting in a reduction in the relative mRNA levels of PPARalpha target genes, such as liver-carnitine-palmitoyl transferase-I (CPT-I) and mitochondrial medium-chain acyl-CoA dehydrogenase (MCAD). Further, in accordance with a liver PPARalpha deficiency in old rats, treatment of old animals with a therapeutic dose of gemfibrozil (GFB) (3mg/kg per day, 21 days) was ineffective in reducing plasma triglyceride concentrations (TG), despite attaining a 50% reduction in TG when GFB was administered to young animals at the same dose and length of treatment. We hypothesize that the decrease in hepatic PPARalpha can be related to a state of leptin resistance present in old animals.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The role of retinoic acids (RA) on liver fatty acid-binding protein (L-FABP) expression was investigated in the well differentiated FAO rat hepatoma cell line. 9-cis-Retinoic acid (9-cis-RA) specifically enhanced L-FABP mRNA levels in a time- and dose-dependent manner. The higher induction was found 6 h after addition of 10(-6) M 9-cis-RA in the medium. RA also enhanced further both L-FABP mRNA levels and cytosolic L-FABP protein content induced by oleic acid. The retinoid X receptor (RXR) and the peroxisome proliferator-activated receptor (PPAR), which are known to be activated, respectively, by 9-cis-RA and long chain fatty acid (LCFA), co-operated to bind specifically the peroxisome proliferator-responsive element (PPRE) found upstream of the L-FABP gene. Our result suggest that the PPAR-RXR complex is the molecular target by which 9-cis-RA and LCFA regulate the L-FABP gene.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Proteins secreted from adipose tissue are increasingly recognized to play an important role in the regulation of glucose metabolism. However, much less is known about their effect on lipid metabolism. The fasting-induced adipose factor (FIAF/angiopoietin-like protein 4/peroxisome proliferator-activated receptor gamma angiopoietin-related protein) was previously identified as a target of hypolipidemic fibrate drugs and insulin-sensitizing thiazolidinediones. Using transgenic mice that mildly overexpress FIAF in peripheral tissues we show that FIAF is an extremely powerful regulator of lipid metabolism and adiposity. FIAF overexpression caused a 50% reduction in adipose tissue weight, partly by stimulating fatty acid oxidation and uncoupling in fat. In addition, FIAF overexpression increased plasma levels of triglycerides, free fatty acids, glycerol, total cholesterol, and high density lipoprotein (HDL)-cholesterol. Functional tests indicated that FIAF overexpression severely impaired plasma triglyceride clearance but had no effect on very low density lipoprotein production. The effects of FIAF overexpression were amplified by a high fat diet, resulting in markedly elevated plasma and liver triglycerides, plasma free fatty acids, and plasma glycerol levels, and impaired glucose tolerance in FIAF transgenic mice fed a high fat diet. Remarkably, in mice the full-length form of FIAF was physically associated with HDL, whereas truncated FIAF was associated with low density lipoprotein. In human both full-length and truncated FIAF were associated with HDL. The composite data suggest that via physical association with plasma lipoproteins, FIAF acts as a powerful signal from fat and other tissues to prevent fat storage and stimulate fat mobilization. Our data indicate that disturbances in FIAF signaling might be involved in dyslipidemia.